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ABSTRACT

The posterior collapse phenomenon in variational autoencoder (VAE), where the
variational posterior distribution closely matches the prior distribution, can hinder
the quality of the learned latent variables. As a consequence of posterior collapse,
the latent variables extracted by the encoder in VAE preserve less information
from the input data and thus fail to produce meaningful representations as input
to the reconstruction process in the decoder. While this phenomenon has been an
actively addressed topic related to VAE performance, the theory for posterior col-
lapse remains underdeveloped, especially beyond the standard VAE. In this work,
we advance the theoretical understanding of posterior collapse to two important
and prevalent yet less studied classes of VAE: conditional VAE and hierarchical
VAE. Specifically, via a non-trivial theoretical analysis of linear conditional VAE
and hierarchical VAE with two levels of latent, we prove that the cause of posterior
collapses in these models includes the correlation between the input and output of
the conditional VAE and the effect of learnable encoder variance in the hierarchi-
cal VAE. We empirically validate our theoretical findings for linear conditional
and hierarchical VAE and demonstrate that these results are also predictive for
non-linear cases with extensive experiments.

1 INTRODUCTION

Variational autoencoder (VAE) (Kingma & Welling, 2013) has achieved successes across unsuper-
vised tasks that aim to find good low-dimensional representations of high-dimensional data, ranging
from image generation (Child, 2021; Vahdat & Kautz, 2020) and text analysis (Bowman et al.,
2015; Miao et al., 2016; Guu et al., 2017) to clustering (Jiang et al., 2016) and dimensionality re-
duction (Akkari et al., 2022). The success of VAE relies on integrating variational inference with
flexible neural networks to generate new observations from an intrinsic low-dimensional latent struc-
ture (Blei et al., 2017). However, it has been observed that when training to maximize the evidence
lower bound (ELBO) of the data’s log-likelihood, the variational posterior of the latent variables in
VAE converges to their prior. This phenomenon is known as the posterior collapse. When posterior
collapse occurs, the data does not contribute to the learned posterior distribution of the latent vari-
ables, thus limiting the ability of VAE to capture intrinsic representation from the observed data. It
is widely claimed in the literature that the causes of the posterior collapse are due to: i) the Kull-
back–Leibler (KL) divergence regularization factor in ELBO that pushes the variational distribution
towards the prior, and ii) the powerful decoder that assigns high probability to the training samples
even when posterior collapse occurs. A plethora of methods have been proposed to mitigate the
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effect of the KL-regularization term in ELBO training process by modifying the training objective
functions (Bowman et al., 2015; Huang et al., 2018; Sønderby et al., 2016; Higgins et al., 2016;
Razavi et al., 2019) or by redesigning the network architecture of the decoder to limit its representa-
tion capacity (Gulrajani et al., 2017; Yang et al., 2017; Semeniuta et al., 2017; Van Den Oord et al.,
2017; Dieng et al., 2019; Zhao et al., 2020). However, the theoretical understanding of posterior
collapse has still remained limited due to the complex loss landscape of VAE.

Contribution: Given that the highly non-convex nature of deep nonlinear networks imposes a sig-
nificant barrier to the theoretical understanding of posterior collapse, linear VAEs are a good candi-
date model for providing important theoretical insight into this phenomenon and have been recently
studied in (Wang & Ziyin, 2022; Lucas et al., 2019). Nevertheless, these works only focus on the
simplest settings of VAE, which are the linear standard VAE with one latent variable (see Figure
1(a) for the illustration). Hence, the theoretical analysis of other important VAEs architectures has
remained elusive.

In this paper, we advance the theory of posterior collapse to two important and prevalently used
classes of VAE: conditional VAE (CVAE) (Sohn et al., 2015) and Markovian Hierarchical VAE
(MHVAE) (Luo, 2022). CVAE is widely used in practice for structured prediction tasks (Sohn et al.,
2015; Walker et al., 2016). By conditioning on both latent variables and the input condition in the
generating process, CVAE overcomes the limitation of VAE that the generating process cannot be
controlled. On the other hand, MHVAE is an extension of VAE to incorporate higher levels of latent
structures and is more relevant to practical VAE architecture that use multiple layers of latent variable
to gain greater expressivity (Child, 2021; Vahdat & Kautz, 2020; Maaløe et al., 2019). Moreover,
studying MHVAE potentially sheds light on the understanding of diffusion model (Sohl-Dickstein
et al., 2015; Song & Ermon, 2019; Ho et al., 2020), since diffusion model can be interpreted as a
simplified version of deep MHVAE (Luo, 2022). Following common training practice, we consider
linear CVAE and MHVAE with adjustable hyperparameter β’s before each KL-regularization term
to balance latent channel capacity and independence constraints with reconstruction accuracy as in
the β-VAE (Higgins et al., 2016). Our contributions are four-fold:

1. We first revisit linear standard VAE and verify the importance of learnability of the encoder
variance to posterior collapse existence. For unlearnable encoder variance, we prove that
posterior collapse might not happen even when the encoder is low-rank (see Section 3).

2. We characterize the global solutions of linear CVAE training problem with precise condi-
tions for the posterior collapse occurrence. We find that the correlation of the training input
and training output is one of the factors that decides the collapse level (see Section 4.1).

3. We characterize the global solutions of linear two-latent MHVAE training problem and
point out precise conditions for the posterior collapse occurrence. We study the model
having separate β’s and find their effects on the posterior collapse of the latent variables.

4. We empirically show that the insights deduced from our theoretical analysis are also pre-
dictive for non-linear cases with extensive experiments (see Section 5).

Notation: We will use the following notations frequently for subsequent analysis and theorems.
For input data x ∈ RD0 , we denote A := Ex(xx

⊤), the second moment matrix. The eigenvalue
decomposition of A is A = PAΦP

⊤
A with Φ ∈ Rd0×d0 and PA ∈ RD0×d0 where d0 ≤ D0 is the

number of positive eigenvalues of A. For CVAE, in addition to the eigenvalue decomposition of
condition x as above, we define similar notation for output y, B := Ey(yy

⊤) = PBΨP⊤
B with Ψ ∈

Rd2×d2 and P ∈ RD2×d2 where d2 ≤ D2 is the number of positive eigenvalues of B. Moreover,
we consider the whitening transformation: x̃ = Φ−1/2P⊤

Ax ∈ Rd0 and ỹ = Ψ−1/2P⊤
By ∈ Rd2 . It

is clear that Ex(x̃x̃
⊤) = Id0

, Ey(ỹỹ
⊤) = Id2

and x, y can be written as x = PAΦ
1/2x̃ and y =

PBΦ
1/2ỹ. The KL divergence of two probability distributions P and Q is denoted as DKL(P ||Q).

2 BACKGROUND ON VARIATIONAL AUTOENCODERS

Variational Autoencoder: VAE represents a class of generative models assuming each data point x
is generated from an unseen latent variable. Specifically, VAE assumes that there exists a latent vari-
able z ∈ Rd1 , which can be sampled from a prior distribution p(z) (usually a normal distribution),
and the data can be sampled through a conditional distribution p(x|z) that modeled as a decoder.
Because the marginal log-likelihood log p(x) is intractable, VAE uses amortized variational infer-
ence (Blei et al., 2017) to approximate the posterior p(z|x) via a variational distribution q(z|x). The
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(a) Standard VAE (b) Conditional VAE (c) Markovian Hierarchical VAE

Figure 1: Graphical illustration of standard VAE, CVAE, and MHVAE with two latents.

variation inference q(z|x) is modeled as an encoder that maps data x into the latent z in latent space.
This allows tractable approximate inference using the evidence lower bound (ELBO):

ELBOVAE := Eq(z|x)[log p(x|z)]−DKL(q(z|x)||p(z)) ≤ log p(x). (1)

Standard training involves maximizing the ELBO, which includes a reconstruction term
Eq(z|x)[log p(x|z)] and a KL-divergence regularization term DKL(q(z|x)||p(z)).
Conditional Variational Autoencoder: One of the limitations of VAE is that we cannot control its
data generation process. Assume that we do not want to generate some random new digits, but some
certain digits based on our need, or assume that we are doing the image inpainting problem: given
an existing image where a user has removed an unwanted object, the goal is to fill in the hole with
plausible-looking pixels. Thus, CVAE is developed to address these limitations (Sohn et al., 2015;
Walker et al., 2016). CVAE is an extension of VAE that include input condition x, output variable
y, and latent variable z. Given a training example (x, y), CVAE maps both x and y into the latent
space in the encoder and use both the latent variable z and input x in the generating process. Hence,
the variational lower bound can be rewritten as follows:

ELBOCVAE := Eqϕ(z|x,y) [log pθ(y|x, z)] +DKL(qϕ(z|x, y)||p(z|x)) ≤ log p(y|x), (2)

where p(z|x) is still a standard Gaussian because the model assumes z is sampled independently of
x at test time (Doersch, 2016).

Hierarchical Variational Autoencoder: Hierarchical VAE (HVAE) is a generalization of VAE by
introducing multiple latent layers with a hierarchy to gain greater expressivity for both distributions
qϕ(z|x) and pθ(x|z) (Child, 2021). In this work, we focus on a special type of HVAE named the
Markovian HVAE (Luo, 2022). In this model, the generative process is a Markov chain, where
decoding each latent zt only conditions on previous latent zt+1. The ELBO in this case becomes

Eqϕ(z1:T |x)

[
log

p (x, z1:T )

qϕ (z1:T | x)

]
= Eqϕ(z1:T |x)

[
log

p (zT ) pθ (x | z1)
∏T

t=2 pθ (zt−1 | zt)
qϕ (z1 | x)

∏T
t=2 qϕ (zt | zt−1)

]
.

3 REVISITING LINEAR VAE WITH ONE LATENT AND MORE

We first revisit the simplest model, i.e., linear standard VAE with one latent variable, which has also
been studied in (Lucas et al., 2019; Dai et al., 2020; Wang & Ziyin, 2022), with two settings: learn-
able and unlearnable (i.e., predefined and not updated during the training of the model) diagonal
encoder variance. For both settings, the encoder is a linear mapping W ∈ Rd1×D0 that maps input
data x ∈ RD0 to latent space z ∈ Rd1 . Applying the reparameterization trick (Kingma & Welling,
2013), the latent z is produced by further adding a noise term ξ ∼ N (0,Σ), i.e., z = Wx+ ξ with
Σ ∈ Rd1×d1 is the encoder variance. Thus, we have the recognition model qϕ(z|x) = N (Wx,Σ).
The decoder is a linear map that parameterizes the distribution pθ(x|z) = N (Uz, η2decI) with
U ∈ RD0×d1 and ηdec is unlearnable. The prior p(z) is N (0, η2encI) with known ηenc. Note that
we do not include bias in the linear encoder and decoder, since the effect of bias term is equivalent
to centering both input and output data to zero mean (Wang & Ziyin, 2022). Therefore, adding the
bias term does not affect the main results. After dropping the multiplier 1/2 and other constants, the
negative ELBO becomes

LVAE =
1

η2dec
Ex

[
∥UWx− x∥2 + trace((U⊤U+ βc2I)Σ) + βc2∥Wx∥2

]
− β log |Σ|, (3)
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where c := ηdec/ηenc. Our contributions are: i) we characterize the global solutions of linear VAE
training problem for unlearnable Σ with arbitrary elements on the diagonal, which is more general
than the Proposition 2 in (Wang & Ziyin, 2022) where only the unlearnable isotropic Σ = σ2I
is considered, and ii) we prove that for the case of unlearnable Σ, even when the encoder matrix
is low-rank, posterior collapse may not happen. While it has been known that for learnable Σ,
low-rank encoder matrix certainly leads to posterior collapse (Lucas et al., 2019; Dai et al., 2020).
Thus, learnable latent variance is among the causes of posterior collapse, opposite to the results in
Section 4.5 in Wang & Ziyin (2022) that “a learnable latent variance is not the cause of posterior
collapse”. We will explain this further after Theorem 1. Recalling the notations defined in Section
1, the following theorem characterizes the global minima (U∗,W∗) when minimizing LVAE for
unlearnable Σ case. In particular, we derive the global minima’s SVD with closed-form singular
values, via the SVD and singular values of the matrix Z := Ex(xx̃

⊤) and other hyperparameters.
Theorem 1 (Unlearnable Σ). Let Z := Ex(xx̃

⊤) = RΘS is the SVD of Z with singular val-
ues {θi}d0

i=1 in non-increasing order and define V := WPAΦ
1/2. With unlearnable Σ =

diag(σ2
1 , . . . , σ

2
d1
), the optimal solution of (U∗,W∗) of LVAE is as follows:

U∗ = RΩT⊤,V∗ := W∗PAΦ
1/2 = TΛS⊤, (4)

where T ∈ Rd1×d1 is an orthonormal matrix that sort the diagonal of Σ in non-decreasing order,
i.e., Σ = TΣ

′
T⊤ = Tdiag(σ′2

1 , . . . , σ′2
d1
)T⊤ with σ′2

1 ≤ . . . ≤ σ′2
d1

. Ω ∈ RD0×d1 and Λ ∈
Rd1×d0 are rectangular diagonal matrices with the following elements, ∀ i ∈ [d1]:

ω∗
i =

√
max

(
0,

√
βηdec

ηencσ′
i

(
θi −

√
βσ′

i

ηdec

ηenc

))
, λ∗

i =

√
max

(
0,

ηencσ
′
i√

βηdec

(
θi −

√
βσ

′
i

ηdec

ηenc

))
.

If d0 < d1, we denote θi = 0 for d0 < i ≤ d1.

The proof of Theorem 1 is in Appendix E.1. We note that our result allows for arbitrary predefined
values of {σi}d1

i=1, thus is more general than the Proposition 2 in (Wang & Ziyin, 2022) where σi’s
are all equal to a constant. Under broader settings, there are two notable points from Theorem 1
that have not been captured in the previous result of (Wang & Ziyin, 2022): i) at optimality, the
singular matrix T sorts the set {σi}d1

i=1 in non-decreasing order, and ii) singular values ωi and λi are
calculated via the i-th smallest value σ′

i of the set {σi}d1
i=1, not necessarily the i-th element σi.

Verify the role of learnability of the encoder variance to posterior collapse: For the k-th dimen-
sion of the latent z = Wx+ξ to collapse, i.e., p(zk|x) = N (0, η2enc), we need the k-th dimension of
the mean vector Wx of the posterior q(z|x) to equal 0 for any x. From Theorem 1, we see the ranks
of both the encoder and decoder depend on the sign of θi −

√
βσ′

iηdec/ηenc. The model becomes
low-rank when the sign of this term is negative for some i. However, low-rank V∗ is not sufficient
for the occurrence of posterior collapse, it also depends on the sorting matrix T that sorts {σi}d1

i=1 in
non-decreasing order. For the isotropic Σ case where all σi’s are all equal, T can be any orthogonal
matrix since {σi} are in non-decreasing order already. Therefore, although Λ and ΛS⊤ has zero
rows due to the low-rank of V∗, V∗ = TΛS⊤ might have no zero rows and Wx = Vx̃ might have
no zero component. Thus, posterior collapse might not happen. This is opposite to the claim that
posterior collapse occurs in this unlearnable isotropic Σ setting from Theorem 1 in (Wang & Ziyin,
2022). If all values {σi}d1

i=1 are distinct, T must be a permutation matrix and hence, V∗ = TΛS⊤

has d1 − rank(V∗) zero rows, corresponding with dimensions of latent z that follow N (0, σ2
i ).

For the setting of learnable and diagonal Σ, the low-rank structure of U∗ and V∗ surely leads to
posterior collapse. Specifically, at optimality, we have Σ∗ = βη2dec(U

∗⊤U∗ + βc2I)−1, and thus,
U∗⊤U∗ is diagonal. As a result, U∗ can be decomposed as U∗ = RΩ with orthonormal matrix
R ∈ RD0×D0 and Ω is a rectangular diagonal matrix containing its singular values. Hence, U∗ has
d1 − r zero columns with r := rank(U∗). Dai et al. (2017) claimed that there exists an inherent
mechanism to prune these superfluous columns to exactly zero. Looking at the loss LVAE at Eqn. (3),
we see that these d1 − r zero columns of U∗ will make the corresponding d1 − r dimensions of the
vector Wx to not appear in the reconstruction term ∥UWx−x∥2, and they only appear in the term
∥Wx∥2 = ∥Vx̃∥2 = ∥V∥2F . These dimensions of Wx subsequently becomes zeroes at optimality
due to the l2 regularization. Therefore, these d1 − r dimensions of the latent z = Wx+ ξ collapse
to its prior N (0, η2enc). The detailed analysis for learnable Σ case is provided in the Appendix E.2.

4



Published as a conference paper at ICLR 2024

4 BEYOND STANDARD VAE: POSTERIOR COLLAPSE IN LINEAR
CONDITIONAL AND HIERARCHICAL VAE

4.1 CONDITIONAL VAE

In this section, we consider linear CVAE with input condition x ∈ RD0 , the latent z ∈ Rd1 , and
output y ∈ RD2 . The latent z is produced by adding a noise term ξ ∼ N (0,Σ) to the output of the
linear encoder networks that maps both x and y into latent space, i.e., z = W1x + W2y + ξ,
where Σ ∈ Rd1×d1 is the encoder variance, W1 ∈ Rd1×D0 , and W2 ∈ Rd1×D2 . Hence,
qϕ(z|x, y) = N (W1x + W2y,Σ). The decoder parameterizes the distribution pθ(y|z, x) =
N (U1z + U2x, η

2
decI), where U1 ∈ RD2×d1 ,U2 ∈ RD2×D0 , and predefined ηdec. We set the

prior p(z) = N (0, η2encI) with a pre-defined ηenc. An illustration of the described architecture is
given in Figure 1(b). We note that the linear standard VAE studied in (Wang & Ziyin, 2022; Lucas
et al., 2019) does not capture this setting. Indeed, let us consider the task of generating new pictures.
The generating distribution p(y|z) considered in (Wang & Ziyin, 2022; Lucas et al., 2019), where
z ∼ N (0, I), does not condition on the input x on its generating process.

Previous works that studied linear VAE usually assume Σ is data-independent or only linearly de-
pendent to the data (Lucas et al., 2019; Wang & Ziyin, 2022). We find that this constraint can be
removed in the analysis of linear standard VAE, CVAE, and MHVAE. Particularly, when each data
has its own learnable Σx, the training problem is equivalent to using a single Σ for all data (see Ap-
pendix C for details). Therefore, for brevity, we will use the same variance matrix Σ for all samples.
Under this formulation, the negative ELBO loss function in Eqn. (2) can be written as:

LCVAE(W1,W2,U1,U2,Σ) =
1

η2dec
Ex,y

[
∥(U1W1 +U2)x+ (U1W2 − I)y∥2

+ trace(U1ΣU⊤
1 ) + βc2(∥W1x+W2y∥2 + trace(Σ))

]
− βd1 − β log |Σ|, (5)

where c := ηdec/ηenc and β > 0. Comparing to the loss LVAE of standard VAE, minimizing LCVAE
is a more complicated problem due to the fact that the architecture of CVAE requires two additional
mappings, including the map from the output y to latent z in the encoder and the map from condition
x to output y in the decoder. Recall the notations defined in Section 1, we find the global minima of
LCVAE and derive the closed-form singular values of the decoder map U1 in the following theorem.
We focus on the rank and the singular values of U1 because they are important factors that influence
the level of posterior collapse (i.e., how many latent dimensions collapse), which we will explain
further after the theorem.
Theorem 2 (Learnable Σ). Let c = ηdec/ηenc, Z = Ex,y(ỹx̃

⊤) ∈ Rd0×d2 and define E :=

PBΨ
1/2(I − Z⊤Z)Ψ1/2P⊤

B = PΘQ be the SVD of E with singular values {θi}d2
i=1 in non-

increasing order. The optimal solution of (U∗
1,U

∗
2,W

∗
1,W

∗
2,Σ

∗) of LCVAE is as follows:

U∗
1 = PΩR⊤,Σ∗ = βη2dec(U

∗⊤
1 U∗

1 + βc2I)−1,

where R ∈ Rd1×d1 is an orthonormal matrix. Ω is the rectangular singular matrix of U∗
1 with

diagonal elements {ω∗
i }

d1
i=1 and variance Σ∗ = diag(σ2

1 , σ
2
2 , . . . , σ

2
d1
) with:

ω∗
i =

1

ηenc

√
max(0, θi − βη2dec), σ′

i =

{√
βηencηdec/

√
θi, if θi ≥ βη2dec

ηenc, if θi < βη2dec
, ∀ i ∈ [d1] (6)

where {σ′
i}

d1
i=1 is a permutation of {σi}d1

i=1, i.e., diag(σ′
1, . . . , σ

′
d1
) = R⊤ diag(σ1, . . . , σd1

)R. If
d2 < d1, we denote θi = 0 for d2 < i ≤ d1. The other matrices obey:U∗

2PAΦ
1/2 = PBΨ

1/2Z⊤

W∗
2PBΨ

1/2(I− Z⊤Z) = (U∗⊤
1 U∗

1 + βc2I)−1U∗⊤
1 PBΨ

1/2(I− Z⊤Z)
W∗

1PAΦ
1/2 = −W∗

2PBΨ
1/2Z⊤

(7)

The proof of Theorem 2 is given in Appendix D.1. Although the results are proven for relatively
simplistic linear encoder and decoder, there are some interesting insights about the global minimum
that can be drawn from our theorem and empirically observed to be true for the non-linear case (see
Section 5). First, we notice that the rank of U∗

1 depends on the sign of θi − βη2dec. When there are
some i’s that the sign is negative, the map U∗

1 from z to y in the generating process becomes low-
rank. Since the encoder variance Σ is learnable, the posterior collapse will surely happen in this
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case. Specifically, assuming r is the rank of U∗
1 and r < d1, i.e., U∗ is low-rank, then U∗

1 has d1−r
zero columns at optimality. This makes the corresponding d1 − r dimensions of W1x and W2y no
longer appear in the reconstruction term ∥(U1W1+U2)x+(U1W2−I)y∥ of the loss LCVAE defined
in Eqn. (5). These dimensions of W1x and W2y can only influence the term ∥W1x+W2y∥ coming
from the KL-regularization, and thus, this term forces these d1 − r dimensions of W1x +W2y to
be 0. Hence, the distribution of these d1 − r dimensions of latent variable z = W1x + W2y + ξ
collapses exactly to the prior N (0, η2encI), which means that posterior collapse has occurred. Second,
the singular values θ’s of E decide the rank of U∗

1 and therefore determine the level of the posterior
collapse of the model. If the data (x, y) has zero mean, for example, we can add bias term to have
this effect, then E = PBΨ

1/2(I − Cov(ỹ, x̃) Cov(ỹ, x̃)⊤)Ψ1/2P⊤
B . Thus, given the same y, the

larger correlation (both positive and negative) between x and y leads to the larger level of posterior
collapse. In an extreme case, where x = y, we have that E = 0 and U1 = 0. This is reasonable
since y = x can then be directly generated from the map U2x, while the KL-regularization term
converges to 0 due to the complete posterior collapse. Otherwise, if x is independent of y, the
singular values of E are maximized, and posterior collapse will be minimized in this case. Lastly,
Theorem 2 implies that a sufficiently small β or ηdec will mitigate posterior collapse. This is aligned
with the observation in (Lucas et al., 2019; Dai et al., 2020; Wang & Ziyin, 2022) for the linear VAE
model. We also note that the i-th element σi does not necessarily correspond with the i-th largest
singular θi, but it depends on the right singular matrix R of U∗ to define the ordering.

4.2 MARKOVIAN HIERARCHICAL VAE

We extend our results to linear MHVAE with two levels of latent. Specifically, we study the case
where the encoder variance matrix of the first latent variable Σ1 is unlearnable and isotropic, while
the encoder variance of the second latent variable Σ2 is either: i) learnable, or, ii) unlearnable
isotropic. In these settings, the encoder process includes the mapping from input x ∈ RD0 to first
latent z1 ∈ Rd1 via the distribution qϕ(z1|x) = N (W1x,Σ1),W1 ∈ Rd1×D0 , and the mapping
from z1 to second latent z2 ∈ Rd2 via qϕ(z2|z1) = N (W2z1,Σ2),W2 ∈ Rd2×d1 . Similarly,
the decoder process parameterizes the distribution p(z1|z2) = N (U2z2, η

2
decI),U2 ∈ Rd1×d2 , and

p(x|z1) = N (U1z1, η
2
decI),U1 ∈ RD0×d1 . The prior distribution is given by p(z1) = N (0, η2encI).

A graphical illustration is provided in Fig. 1(c). Our goal is to minimize the following negative
ELBO (the detailed derivations are at Appendix F.1):

LHVAE = −Ex

[
Eq(z1,z2|x)(log p(x|z1))− β1Eq(z2|z1)(DKL(q(z1|x)||p(z1|z2))− β2Eq(z1|x)(DKL(q(z2|z1)||p(z2))

]
.

=
1

η2
dec

Ex

[
∥U1W1x− x∥2 + trace(U1Σ1U

⊤
1 ) + β1∥U2W2W1x−W1x∥2 + β1 trace(U2Σ2U

⊤
2 )

+ β1 trace((U2W2 − I)Σ1(U2W2 − I)⊤) + c2β2

(
∥W2W1x∥2 + trace(W2Σ1W

⊤
2 ) + trace(Σ2)

)]
− β1 log |Σ1| − β2 log |Σ2|.

Although the above encoder consists of two consecutive linear maps with additive noises, the
ELBO training problem must have an extra KL-regularizer term between the two latents, i.e.,
DKL(qϕ(z1|x)||pθ(z1|z2)). This term, named “consistency term” in (Luo, 2022), complicates the
training problem much more, as can be seen via the differences between LHVAE and LVAE in the
standard VAE setting in Eqn. (3). We note that this model shares many similarities with diffusion
models where the encoding process of diffusion models also consists of consecutive linear maps
with injected noise, and their training process requires to minimize the consistency terms at each
timestep. We characterize the global minima of LHVAE for learnable Σ2 in the following theorem.
Similar as above theorems, Theorem 3 derives the SVD forms and the closed-form singular values
of the encoder and decoder maps to analyze the level of posterior collapse via the hyperparameters.
Theorem 3 (Unlearnable isotropic Σ1, Learnable Σ2). Let c = ηdec/ηenc, Z = Ex(xx̃

⊤) = RΘS⊤

is the SVD of Z with singular values {θi}d0
i=1 in non-increasing order, and unlearnable Σ1 = σ2

1I
with σ1 > 0. Assuming d0 ≥ d1 = d2, the optimal solution of (U∗

1,U
∗
2,W

∗
1,W

∗
2,Σ

∗
2) of LHVAE is

V∗
1 = W∗

1PAΦ
1/2 = PΛR⊤,U∗

2 = PΩQ⊤,

W∗
2 = U∗⊤

2 (U∗
2U

∗⊤
2 + c2I)−1,U∗

1 = ZV∗⊤
1 (V∗

1V
∗⊤
1 +Σ1)

−1,

and Σ∗
2 = β2

β1
η2dec(U

∗⊤
2 U∗

2 + c2I)−1 where P,Q are square orthonormal matrices. Λ and Ω are
rectangular diagonal matrices with the following elements, for i ∈ [d1]:

6



Published as a conference paper at ICLR 2024

a) If θ2i ≥ β2η
2
dec

σ2
1

max(σ2
1 ,

β2

β1
η2dec): λ

∗
i = σ1√

β2ηdec

√
θ2i − β2η2dec, ω

∗
i =

√
σ2
1θ

2
i

β2η2
encη

2
dec

− β2

β1

η2
dec

η2
enc
.

b) If θ2i <
β2η

2
dec

σ2
1

max(σ2
1 ,

β2

β1
η2dec) and σ2

1 ≥ β2

β1
η2dec: λ∗

i = 0, ω∗
i = (σ2

1 − η2decβ2/β1)/η
2
enc.

c) If θ2i <
β2η

2
dec

σ2
1

max(σ2
1 ,

β2

β1
η2dec) and σ2

1 < β2

β1
η2dec: λ∗

i =

√
max

(
0, σ1√

β1

(
θi −

√
β1σ1

))
, ω∗

i = 0.

The detailed proof of Theorem 3 is in Appendix F.2. The proof uses zero gradient condition of
critical points to derive U1 as a function of V1 and W2 as a function of U2 to reduce the number of
variables. Then, the main novelty of the proof is that we prove V1V

⊤
1 and U2U

⊤
2 are simultaneously

diagonalizable, and thus, we are able to convert the zero gradient condition into relations of their
singular values λ’s and ω’s. Thanks to these relations between λ’s and ω’s, the loss function now
can be converted to a function of singular values. The other cases of the input and latent dimensions,
e.g., d0 < d1, are considered with details in Appendix F.2.

Theorem 3 identifies precise conditions for the occurrence of posterior collapse and the low-rank
structure of the model at the optimum. There are several interesting remarks can be drawn from
the results of the above theorem. First, regarding the posterior collapse occurrence, since Σ2 is
learnable and diagonal, if there are some i that ωi = 0, i.e., U∗

2 is low-rank, the second latent
variable will exhibit posterior collapse with the number of non-collapse dimensions of z2 equal the
number of non-zero ωi’s. However, the first latent variable might not suffer from posterior collapse
even when V∗

1 is low-rank due to the unlearnable isotropic Σ1, with the same reason that we discuss
in the standard VAE case in Section 3. Second, all hyperparameters, including ηdec, β1, β2, σ1 but
except ηenc, are decisive for the rank of the encoders/decoders and the level of posterior collapse. In
particular, the singular value ωi > 0 when either θi ≥ β2η

2
dec√

β1σ1
or σ2

1 ≥ β2

β1
η2dec. Therefore, having a

sufficiently small β2 and ηdec or a sufficiently large β1 can mitigate posterior collapse for the second
latent. Given ωi > 0, λi > 0 if θ2i − β2η

2
dec > 0. Hence, a sufficiently small β2 and ηdec will also

increase the rank of the mapping from the input data x to the first latent z1. In summary, decreasing
the value of β2 and ηdec or increasing the value of β1 can avoid posterior collapse, with the former
preferred since it also avoids the low-rank structure for the first latent variable.

Remark 1. If the second latent variable z2 suffers a complete collapse, the generating distribution
becomes pθ(z1|z2) = N (0, η2decI) since all columns of U2 are now zero columns. Therefore, the
MHVAE model now becomes similar to a standard VAE with the prior N (0, η2decI). We conjecture
this observation also applies to MHVAE with more layers of latent structures: when a complete
posterior collapse happens at a latent variable, its higher-level latent variables become useless.
Thus, the information sharing between input data and every latent is crucial to prevent this situation.
For example, many HVAE models use additional connections (e.g., skip-connection) between the
input and multiple layers of latent variables (Child, 2021; Vahdat & Kautz, 2020; Maaløe et al.,
2017; Zhao et al., 2017). Moreover, (Sønderby et al., 2016) empirically shows that 5-latent vanilla
MHVAE (similar as Fig. 1(c) architecture) cannot train higher-level latents to be active and uses
only lower layers to learn the representation work. They observe that using methods such as batch
normalization or a ”warm-up” training scheme helps prevent the latent units from becoming inactive
during the initial stage of training, which mitigates collapse for the vanilla MHVAE.

Remark 2. We characterize the global minima of two-latent MHVAE with both latent variances that
are unlearnable and isotropic in Appendix F.1. In this setting, posterior collapse might not happen
in either of the two latent variables. This again means that the learnability of the encoder variances
is one of the causes of posterior collapse.

4.3 MITIGATE POSTERIOR COLLAPSE

The analysis in Sections 4.1 and 4.2 identifies the causes of posterior collapse in conditional VAE
and hierarchical VAE and implies some potential ways to fix it. Although the methods listed in
Table 1 are the implications drawn from results with linear setting, we empirically prove their ef-
fectiveness in non-linear regime in the extensive experiments below in Section 5 and in Appendix A.
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Conditional VAE Markovian Hierarchical VAE

• A sufficiently small β or ηdec can mitigate poste-
rior collapse.

• A sufficiently small β2 or ηdec can both mitigate
collapse of the second latent and increase the rank
of encoder/decoder of the first latent.

• Unlearnable encoder variance can prevent col-
lapse. This is also true for MHVAE.

• Surprisingly, using larger β1 value can mitigate
the collapse for the second latent.

• Since high correlation between the input condi-
tion and the output leads to strong collapse, decor-
relation techniques can help mitigate the collapse.

• Create separate maps between the input and each
latent in case of a complete collapsed latent causes
higher-level latents to lose information of the input.

Table 1: Insights to mitigate posterior collapse drawn from our analysis

(a) Linear VAE (b) ReLU CVAE

(c) ReLU MHVAE

Figure 2: Graphs of (ϵ, δ)-collapse with varied hyperparameters (δ = 0.05). (a) For learnable Σ, 3
(out of 5) latent dimensions collapse immediately at ϵ = 8× 10−5, while collapse does not happen
with unlearnable Σ = I. (b) Larger value of β or ηdec makes more latent dimensions to collapse,
and (c) Larger value of β2 or ηdec triggers more latent dimensions to collapse, whereas larger value
of β1 mitigates posterior collapse.

5 EXPERIMENTS

In this section, we demonstrate that the insights from the linear regime can shed light on the be-
haviors of the nonlinear CVAE and MHVAE counterparts. Due to the space limitation, we mainly
present experiments on non-linear networks in the main paper. Experiments to verify our theorems
for the linear case and additional empirical results for nonlinear VAE, CVAE and HVAE along with
hyperparameter details can be found in Appendix A.

5.1 LEARNABILITY OF ENCODER VARIANCE AND POSTERIOR COLLAPSE

In this experiment, we demonstrate that the learnability of the encoder variance Σ is important to the
occurrence of posterior collapse. We separately train two linear VAE models on MNIST dataset. The
first model has data-independent and learnable Σ, while the second model has fixed and unlearnable
Σ = I. The latent dimension is 5, and we intentionally choose β = 4, ηdec = 1 to have 3 (out of 5)
singular values θ equal 0. It is clear from Fig. 2(a) that with learnable Σ, 3 out of 5 dimensions of the
latent z collapse immediately, while the unlearnable variance does not result in posterior collapse.

5.2 CVAE EXPERIMENTS

We perform the task of reconstructing the MNIST digits from partial observation as described
in (Sohn et al., 2015). We divide each digit image in the MNIST dataset into four quadrants: the
bottom left quadrant is used as the input x and the other three quadrants are used as the output y.

Varying β, ηdec experiment. We train a ReLU CVAE that uses two-layer networks with ReLU
activation as its encoder and decoder with different values of β and ηdec. To measure the degree
of posterior collapse, we use the (ϵ, δ)-collapse definition in (Lucas et al., 2019). Specifically, a
latent dimension i of latent z is (ϵ, δ)-collapsed if Px[DKL(q(zi|x)||p(zi)) < ϵ] ≥ 1 − δ. Fig. 2(b)
demonstrates that decreasing β and ηdec can mitigate posterior collapse, as suggested in Section 4.3.

8
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(a) Linear VAE, ReLU CVAE and CNN
CVAE

(b) ReLU MHVAE

Figure 3: (a) Graphs of (ϵ, δ)-collapse for several CVAEs trained separately on each of three digit
{1, 9, 7} subsets of MNIST (δ = 0.05). Dataset with smaller θi’s (1 → 9 → 7 in increasing order)
has more collapsed dimensions, and (b) Samples reconstructed by nonlinear MHVAE. Smaller β2

alleviates collapse and produces better samples, while smaller β1 has the reverse effect.

Collapse levels on MNIST dataset. Theorem 2 implies that training linear CVAE on a dataset with
a lower set of θi’s, i.e., the singular values of matrix E defined in Theorem 2, is more prone to
posterior collapse. To verify this insight in nonlinear settings, we separately train multiple CVAE
models, including linear CVAE, ReLU CVAE, and CNN CVAE, on three disjoint subsets of the
MNIST dataset. Each subset contains all examples of each digit from the list {1, 7, 9}. To com-
pare the values of θi’s between datasets, we take the sum of the top-16 largest θi’s and get the list
{6.41, 13.42, 18.64} for the digit {1, 9, 7}, respectively. The results presented in Fig. 3(a) empiri-
cally show that the values of θi’s are negatively correlated with the degree of collapse.

5.3 MHVAE EXPERIMENTS

Varying β1, β2, ηdec experiment. In this experiment, we train a ReLU MHVAE that uses two-layer
networks with ReLU activation as the encoder and decoder, with multiple values of β1, β2 and ηdec.
Fig. 2(c) demonstrates that decreasing β2 and ηdec reduce the degree of posterior collapse, while
decreasing β1 has the opposite effect, as Theorem 3 suggests.

Samples reconstructed from ReLU MHVAE with varied β1 and β2. We train the ReLU MHVAE
with Σ1 = 0.52I and parameterized learnable Σ2(x) = (Tanh(MLP(z1)))2 on MNIST dataset.
Fig. 3(b) aligns to the insight discussed in Section 4.3 that decreasing the value of β2 help mitigate
collapse, and thus, produce better samples, while decreasing β1 leads to blurry images. The full
experiment with β1, β2 ∈ {0.1, 1.0, 2.0, 6.0} can be found in Fig. 4 in Appendix A.

6 RELATED WORKS

To avoid posterior collapse, existing approaches modify the training objective to diminish the effect
of KL-regularization term in the ELBO training, such as annealing a weight on KL term during
training (Bowman et al., 2015; Huang et al., 2018; Sønderby et al., 2016; Higgins et al., 2016)
or constraining the posterior to have a minimum KL-distance with the prior (Razavi et al., 2019).
Another line of work avoids this phenomenon by limiting the capacity of the decoder (Gulrajani
et al., 2017; Yang et al., 2017; Semeniuta et al., 2017) or changing its architecture (Van Den Oord
et al., 2017; Dieng et al., 2019; Zhao et al., 2020). On the theoretical side, there have been efforts to
detect posterior collapse under some restricted settings. (Dai et al., 2017; Lucas et al., 2019; Rolinek
et al., 2019) study the relationship of VAE and probabilistic PCA. Specifically, (Lucas et al., 2019)
showed that linear VAE can recover the true posterior of probabilistic PCA. (Dai et al., 2020) argues
that posterior collapse is a direct consequence of bad local minima. The work that is more relatable
to our work is (Wang & Ziyin, 2022), where they find the global minima of linear standard VAE
and find the conditions when posterior collapse occurs. Nevertheless, the theoretical understanding
of posterior collapse in important VAE models such as CVAE and HVAE remains limited. Due to
space limitation, we defer the full related work discussion until Appendix B.
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7 CONCLUDING REMARKS

Despite their prevalence in practical use as generative models, the theoretical understanding of
CVAE and HVAE has remained limited. This work theoretically identifies causes and precise con-
ditions for posterior collapse occurrence in linear CVAE and MHVAE from loss landscape perspec-
tives. Some interesting insights beyond the causes of posterior collapse in linear standard VAE
drawn from our analysis include: i) the strong correlation between the input conditions and the out-
put of CVAE is indicative of strong posterior collapse, ii) posterior collapse may not happen if the
encoder variance is unlearnable, even when the encoder network is low-rank and iii) how each β
in MHVAE interacts with the rank of the model. The experiments show that these insights are also
predictive of nonlinear networks. One limitation of our work is the case of both encoder variances
are learnable in two-latent MHVAE is not considered due to technical challenges and left as future
works. Another limitation is that our theory does not consider the training dynamics that lead to the
global minima and how they contribute to the collapse problem. One interesting direction is to use
gradient flow to analyze the dynamic of these models and study how posterior collapse emerges.
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Figure 4: Samples reconstructed by nonlinear MHVAE with different (β1, β2) combinations.
Smaller β2 alleviates collapse and produces better samples, while smaller β1 has the reverse ef-
fect.

A ADDITIONAL EXPERIMENTS AND NETWORK TRAINING DETAILS

We define lrec as the reconstruction loss for both CVAE and MHVAE. For CVAE, lKL is the KL-
divergence DKL(qϕ(z|x, y)||p(z|x)). Similarly for MHVAE, lKL1

and lKL2
are the KL-divergence

terms DKL(qϕ(z1|x)||pθ(z1|z2)) and DKL(qϕ(z2|z1)||pθ(z2)), respectively. To measure the discrep-
ancy between the empirical singular values and the theoretical singular values of the encoder and
decoder networks, we define the metric DMA({ui}, {vi}) = 1

D

∑D
i=1 |ui − vi| to be the mean abso-

lute difference between two sets of non-increasing singular values {ui}Di=1, {vi}Di=1 (if the number
of nonzero singular values is different between two sets, we extend the shorter set with 0’s to match
the length of the other set).

A.1 DETAILS OF NETWORK TRAINING AND HYPERPARAMETERS IN SECTION 5 IN MAIN
PAPER

In this subsection, we provide the remaining training details and hyperparameters for experiments
shown in main paper. Unless otherwise stated, all the experiments in Section 5 are trained for 100
epochs with ELBO loss using Adam optimizer, learning rate of 1× 10−3, and batch size of 128.

A.1.1 CVAE EXPERIMENTS

Varying β, ηdec experiment (Fig. 2(b)): In this experiment, we train ReLU CVAE with data-
independent and learnable Σ on the task of reconstructing the original MNIST digit from the bot-
tom left quadrant. ReLU CVAE model is obtained by replacing all the linear layers in both the
encoder and the decoder in the linear CVAE by two-layer MLP with ReLU activation. We set
d0 = 196, d1 = 16, d2 = 588, ηenc = 1.0 and hidden dimension h of the MLPs is set to 16, learning
rate set to 1 × 10−4. We first run the experiment with fixed ηdec = 1.0 and β chosen from the set
{0.1, 0.5, 1.0, 2.0}, then we run the other experiment with fixed β = 1.0 and vary ηdec from the set
{0.25, 0.5, 1.0, 2.0}.

Collapse level of MNIST digit datasets (Fig. 3(a)): We separately train 3 CVAs models, namely
linear CVAE, ReLU CVAE and CNN CVAE on 3 subsets of the MNIST dataset, each subset contains
all examples of each digit {1, 7, 9}. The linear CVAE and ReLU CVAE have ηenc = ηdec = 0.5, β =
1.0 and other parameters the same as the experiment of Fig. 2(b). For CNN CVAE model, we replace
all hidden layers in ReLU CVAE models by convolutional layers (with ReLU activation) and other
settings stay the same. For the encoder of CNN CVAE, we use convolutional layers with kernel size
3× 3× 32, 3× 3× 16, and stride = 2. For its decoder, we use transposed convolutional layers with
kernel sizes 3× 3× 32, 3× 3× 16, 3× 3× 1, and stride = 2.
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Log-likelihood KL AU
Learnable Σ −744.99 9.54 69%

Unlearnable Σ −743.63 9.80 100%

Table 2: Test log-likelihood and posterior collapse degree of ReLU VAE on MNIST with learnable
and unlearnable encoder variance.

Figure 5: Graph of (ϵ, δ)-collapse of ResNet-18 VAE model with learnable Σ and unlearnable
Σ = I, ηenc = 1 (δ = 0.01). Learnable Σ suffers posterior collapse when most of the latent
dimensions collapse to the prior at small ϵ, while unlearnable Σ does not.

A.1.2 MHVAE EXPERIMENTS

Varying β1, β2, ηdec experiment with Relu MHVAE (Fig. 2(c)): In this experiment, we use 2-layer
MLP with ReLU and Tanh activation functions to replace all the linear layers in both encoder and
decoder of Linear MHVAE. We train the model on MNIST dataset with Σ2 parameterized by a
2-layer MLP with latent z1 as the input. We set ηenc = 0.5,Σ1 = 0.52I, the latent dimensions and
the hidden dimension are d1 = d2 = 16 and h = 256, respectively. We run 3 sub-experiments as
follow: i) we fixed β2 = 1, ηdec = 0.5 and then vary β1 from the set {0.1, 0.5, 1.0, 2.0}, ii) we fixed
β1 = 1, ηdec = 0.5 and then vary β2 from the set {0.1, 0.5, 1.0, 2.0}, and iii) we fixed β1 = β2 = 1
and then vary ηdec from the set {0.25, 0.5, 1.0, 2.0}.

Samples reconstructed from ReLU MHVAE with varied β1 and β2 (Fig. 4): We vary β1, β2 from
the set {0.1, 1.0, 2.0, 4.0}, ηenc and ηdec is set to 0.5. Other hyperparameters and the architecture of
ReLU MHVAE model is identical to the experiment in Fig. 2(c).

A.1.3 LEARNABILITY OF ENCODER VARIANCE AND POSTERIOR COLLAPSE

Effect of learnable and unlearnable Σ on posterior collapse (Fig. 2(a)): In this experiment,
we demonstrate that the learnability of the encoder variance Σ is important to the occurrence of
posterior collapse. We separately train 2 Linear VAE models on MNIST dataset. The first model has
shared and learnable Σ, while the second model has fixed Σ = I. We set d0 = 784, d1 = 5, ηenc =
ηdec = 1, hidden dim h = 256, optimized with Adam optimizer for 100 epochs, learning rate set to
1× 10−4 for both models. It is clear from Fig. 2(a) that with learnable Σ, 3 out of 5 dimensions of
the latent z collapse with the KL divergence smaller than 8 × 10−5, while in the same setting, the
unlearnable encoder variance does not result in posterior collapse.

A.2 ADDITIONAL EXPERIMENTS

In this part, we empirically verify our theoretical results for linear VAE, CVAE and MHVAE by
conducting experiments on both synthetic data and MNIST dataset. Furthermore, we continue to
show that the insights drawn from our analysis are also true for non-linear settings.

A.2.1 ADDITIONAL EXPERIMENT FOR VAE

Log-likelihood, KL and AU of VAE with learnable and unlearnable Σ on MNIST (Table 2):
In this experiment, we use 2-layer MLP with ReLU activation to replace all linear layers in Linear
VAE. We set Σ = 0.52I and other settings for this experiment to be identical to the experiment in
Fig. 2(a). We evaluate the model performance on generative tasks using the importance weighted
estimate of log-likelihood on a separate test set. To evaluate posterior collapse, we use two metrics:
1) the KL divergence between the posterior and the prior distribution, DKL(q(z|x)||p(z)) and 2)
the active units (AU) percentage (Wang et al., 2023; Burda et al., 2015) with ϵ = 0.01. Higher AU
percentage means that more latent dimensions are utilized by the model. In this experiment, we set
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(a) Linear CVAE (b) Linear MHVAE

Figure 6: Linear CVAE and MHVAE losses on MNIST dataset with β and β2 vary, respectively.
Our theory correctly predicts complete posterior collapse at β = 3.33 for CVAE, and at β2 = 6.17
for MHVAE.

D0 = 784, d1 = 16, ηenc = ηdec = 1. In Table 2, the unlearnable encoder variance with 100% AU
(compared to 69% AU of the learnable case) indicates that unlearnable encoder variance can help
to mitigate posterior collapse. This experiment provides further evidences that unlearnable encoder
variance can help alleviate posterior collapse.

ResNet-18 VAE with learnable and unlearnable Σ on CIFAR10 (Fig. 5): In this experiment,
we train ResNet-18 VAE model on CIFAR10 dataset (Krizhevsky et al., 2009). The model uti-
lizes ResNet-18 architecture (He et al., 2016) to transform the input image x into the latent vec-
tor z1 in the encoder. In the decoder, transposed convolution layers are employed with kernel
sizes of 3 × 3 × 32, 3 × 3 × 8, 3 × 3 × 3, and a stride of 2. To maintain the appropriate di-
mensions for the ResNet-18 architecture and transposed convolution layers, two 2-layer MLPs
with Relu activation are utilized for intermediate transformations. For this experiment, we set
D0 = 3072, d1 = 128, dhidden = 512, ηenc = ηdec = 1.0, β = 2,Σunlearnable = I, and train the
model for 100 epochs with Adam optimizer and learning rate of 1× 10−3 with batch size 128.Fig. 5
illustrates that the unlearnable encoder variance model exhibits fewer collapsed latent dimensions
compared to the learnable encoder variance model with a same ϵ threshold. These results justify that
using an unlearnable encoder variance can alleviate posterior collapse, as pointed out in the paper.

A.2.2 ADDITIONAL EXPERIMENTS FOR CVAE

Linear CVAE (Fig. 6(a)): In this experiment, we train linear CVAE model to verify the the-
oretical results by checking the sign of θ − βη2dec for posterior collapse described in Theo-
rem 2. The top-1, 2, 4, 8, 16, 32, 64 leading singular vales θi’s of MNIST dataset are
{3.33, 2.09, 1.59, 0.84, 0.44, 0.19, 6.2×10−2}. In this experiment, we set d0 = 196, d1 = 64, d2 =
588, ηenc = ηdec = 1, learning rate set to 1 × 10−4. Thus, to determine the value of β that cause
a mode to collapse, we simply set β = θ. Fig. 6(a) demonstrate that the convergence of βlKL to 0
agrees precisely with the threshold obtained from Theorem 2.

Verification of Theorem 2 (Fig. 7, 8): To verify Theorem 2, we measure the difference between
the empirical singular values and theoretical singular values ω and variances σ2 in two experiments
for linear CVAE: synthetic experiment and MNIST experiment.

In the synthetic experiment, we optimize the matrix optimization problem derived in the proof of
Theorem 2, which is equivalent to the minimizing negative ELBO problem. We randomly initialize
each index of x, y by sampling from N (0, 0.12) and optimize the matrix optimization objective
with d0 = d1 = d2 = 5 and ηenc = ηdec = β = 1. We use Adam optimizer for 200 iterations
with learning rate 0.1. Fig. 7 corroborates Theorem 2 by demonstrating that DMA({ωi}, {ω∗

i })
and DMA({σi}, {σ′

i}) converges to 0, which indicates the learned singular values {ωi} and learned
variances {σ2

i } converges to the theoretical singular values {ω∗
i } and variances {σ′2

i }.

In the MNIST experiment, we train linear CVAE with ELBO loss on the task of reconstructing three
remaining quadrants from the bottom left quadrant of MNIST dataset. Then, we compare the set
of singular values {ωi} and variances {σ2

i } with the theoretical solutions {ω∗
i }, {σ′2

i } described in
Theorem 2. In this experiment, d0 = 196, d1 = 64, d2 = 588, and we set ηenc = ηdec = β = 1.
The linear CVAE network is trained for 100 epochs with Adam optimizer, learning rate 1 × 10−4,
and batch size 128. From Fig. 8, it is evident that both DMA({ωi}, {ω∗

i }) and DMA({σi}, {σ′
i})
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Figure 7: Evolution of DMA metrics across training iterations for linear CVAE on synthetic dataset.

Figure 8: Evolution of DMA metrics across training epochs for linear CVAE trained on MNIST
dataset.

Log-likelihood KL AU

β

0.25 −177.14 18.85 56%
0.5 −174.72 15.42 56%
1.0 −173.93 10.22 44%
2.0 −174.32 6.37 37%
3.0 −176.43 3.57 25%

ηdec

0.25 142.56 17.58 50%
0.5 −173.93 10.22 44%
0.75 −392.68 5.64 38%
1.0 −553.32 2.10 13%
2.0 −951.16 0.00 0%

Table 3: Test log-likelihood and posterior collapse degree of ReLU CVAE on MNIST. As Table 1
stated, smaller β and ηdec mitigate collapse and have more active units.

converge to low value (less than 0.08 at the end of training), which indicates that the values {ωi},
{σi} approaches the theoretical solution.

Log-likelihood, KL and AU of CVAE with varied β, ηdec (Table 3): All settings in this experiment
are identical to the experiment in Fig. 2(b). We measure the log-likelihood, KL divergence of the
model and AU of the model in Table 3. It is clear that decreasing β, ηdec alleviate posterior collapse.
We observe that varying ηdec greatly affects the log-likelihood of the model, while changing β has
mixed effects on this metric.

Correlation of x, y and posterior collapse (Table 4): We train ReLU CVAE model on synthetic
dataset (x, y), which is generated by sampling 1000 samples y ∈ R128 ∼ N (0, I) and then sampling
x with different correlation level with y as depicted in Table 4. In this experiment, we set d0 = d1 =
d2 = 128, ηenc = 1.0, ηdec = 0.5 and train the models with Adam optimizer for 1000 epochs with
batch size 16. The results in Table 4 justify that higher correlation between x and y leads to a
stronger collapse degree (higher AU percentage and KL divergence), as pointed out in our paper and
especially, this insight also applies for non-linear conditional VAE.
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y,u ∼ N(0, I) KL AU
x = y (correlation = I) 0.01 0.1%

x = 1
2y +

√
3
2 u (correlation = 0.5I) 66.20 54.1%

x = 1
4y +

√
15
4 u (correlation = 0.25I) 77.10 63.0%

x = 1
8y +

√
63
8 u (correlation = 0.125I) 79.64 64.7%
x ∼ N(0, I) 80.37 67.2%

Table 4: Correlation and posterior collapse degree of ReLU CVAE on synthetic data. Higher corre-
lation between the input condition x and output y leads to a stronger collapse.

Figure 9: Samples generated by CNN Hierarchical VAE (with ReLU activation) with different
(β1, β2) combinations. Smaller β2 alleviates collapse and produces better samples, while smaller
β1 has the reverse effect.

A.2.3 ADDITIONAL EXPERIMENTS FOR MHVAE

Samples reconstructed from CNN MHVAE with varied β1 and β2 (Fig. 9): Similar to the exper-
iment studying the quality of samples reconstructed of ReLU MHVAE with different combinations
of β1 and β2 in Fig. 4, we train the CNN MHVAE model with Σ1 = σ2

1I and parameterized Σ2(x)
depends on z1. In this experiment, we replace all hidden layers in ReLU MHVAE models by con-
volutional layers (with ReLU activation). The encoder of CNN MHVAE uses convolutional layers
with kernel size 3 × 3 × 64, 3 × 3 × 32 and stride = 2. The decoder of CNN MHVAE consists of
transposed convolutional layers with kernel size 3× 3× 64, 3× 3× 32, 3× 3× 1, and stride = 2.
We set ηenc = ηdec = 0.5, σ1 = 0.5. Fig. 9 illustrates that decreasing the value of β2 help mitigate
collapse and produce better samples, while decreasing β1 causes the images to be blurry, which is
similar to the result in the case of of ReLU MHVAE.

Varying β1, β2, ηdec experiment with ResNet-18 MHVAE on CIFAR10 (Fig. 10): In this ex-
periment, we train ResNet-18 MHVAE on CIFAR10 dataset for 100 epochs with Adam opti-
mizer, learning rate of 1 × 10−3, and batch size of 128. Within the model, ResNet-18 architec-
ture is utilized to map the input image x to the latent vector z1 in the encoder, the transforma-
tion of z1 to y in the decoder is parameterized by transposed convolutional layers with kernel size
3×3×32, 3×3×8, 3×3×3 and stride = 2. Similar to ResNet-18 VAE, two 2-layer MLPs with Relu
activation are utilized for intermediate transformations. Furthermore, the mappings from z1 to z2
and z2 to z1 are implemented using 2-layer MLPs with Relu activation and hidden dimension 1024.
We set d0 = 3072, d1 = d2 = 64, ηenc = σ1 = 0.1. Similar to the varying β1, β2, ηdec experiment
in Section 5.3, we alternatively run 3 sub-experiments as follow: i) we fixed β2 = 1, ηdec = 0.1
and then vary β1 from the set {0.1, 0.5, 1.0, 2.0}, ii) we fixed β1 = 1, ηdec = 0.1 and then vary
β2 from the set {0.1, 0.5, 1.0, 2.0}, and iii) we fixed β1 = β2 = 1 and then vary ηdec from the set
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Figure 10: Graph of (ϵ, δ)-collapsed for ResNet-18 MHVAE model trained on CIFAR10 dataset
with varying hyperparameters β1, β2 and ηdec. (δ = 0.05). As Table 1 suggests, smaller β2 and ηdec
mitigate collapse and have more active units, while β1 has the reverse effect.

Figure 11: Evolution of DMA metrics across training iterations for linear MHVAE with unlearnable
isotropic Σ1 and learnable Σ2 on synthetic dataset.

Figure 12: Evolution of DMA metrics across training epochs for linear MHVAE with unlearnable
isotropic Σ1 and learnable Σ2 trained on MNIST dataset.

{0.25, 0.5, 1.0, 2.0}. The experiments depicted in Fig. 10 clearly support Theorem 3 by demonstrat-
ing that decreasing β2 and ηdec reduces the degree of posterior collapse, while decreasing β1 has the
opposite effect.

Linear MHVAE (Fig. 6(b)): In this experiment, we train the two-latent linear MHVAE model with
unlearnable Σ1 = I and learnable Σ2 on the MNIST dataset with latent dimensions d1 = d2 = 64.
The experiment aims to check the threshold that cause ω∗

i ’s to be 0 described in Theorem 3. We keep
β1 = 1 and then gradually increase β2 to check whether posterior collapse happens as the threshold
predicted. Fig. 6(b) shows that the convergence of KL loss for z2 to zero agrees with the threshold
obtained from Theorem 3. In which, the top-1, 2, 4, 8, 16, 32, 64 leading singular θi’s used for
computing β2 thresholds are {6.17, 2.10, 1.80, 1.24, 0.89, 0.58, 0.34}.

Verification of Theorem 3 (Fig. 11, 12): To verify Theorem 3 for linear MHVAE with learnable
Σ2, we further perform two experiments: synthetic experiment and MNIST experiment.

In the synthetic experiment for linear MHVAE with learnable Σ2, we initialize each index of x, y by
sampling from N (0, 0.12). We optimize the matrix optimization problem in the proof of Theorem 3,
which is equivalent to the minimizing negative ELBO problem. We choose d0 = d1 = d2 =
5,Σ1 = I and ηenc = ηdec = β1 = 1, β2 = 2. We use Adam optimizer for 200 iterations with
learning rate 0.1. The convergence of DMA({λi}, {λ∗

i }) and DMA({ωi}, {ω∗
i }) to 0 depicted in

Fig. 11 empirically corroborate Theorem 3.
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Figure 13: Evolution of DMA metrics across training iterations for linear MHVAE with unlearnable
isotropic Σ1,Σ2 on synthetic dataset.

Figure 14: Evolution of DMA metrics across training epochs for linear MHVAE with unlearnable
isotropic Σ1,Σ2 trained on MNIST dataset.

In the MNIST experiment with learnable Σ2, we train a two-latent linear MHVAE, learnable and
data-independent Σ2 by minimizing the negative ELBO. In this experiment, we set d0 = 784, d1 =
d2 = 10, ηenc = ηdec = 0.5,Σ1 = 0.52I. The ELBO loss is optimized with Adam optimizer
with learning rate 1 × 10−3 and batch size 128 for 100 epochs. Fig. 12 demonstrates that both
DMA({λi}, {λ∗

i }) and DMA({ωi}, {ω∗
i }) converges to low value, which empirically verifies Theo-

rem 3.

Verification of Theorem 5 (Fig. 13, 14): Similar as above, but in the setting of unlearnable isotropic
Σ1,Σ2 studied in Theorem 5, we also verify it by performing two similar experiments on synthetic
dataset and MNIST dataset.

In the synthetic experiment, except pre-defined Σ2 = I, the other settings of this experiment is
identical to the synthetic experiment for MHVAE with learnable Σ2 above. The clear convergence
of DMA({λi}, {λ∗

i }) and DMA({ωi}, {ω∗
i }) to 0 demonstrated in Fig. 13 empirically verified Theo-

rem 5.

In the MNIST experiment, linear MHVAE is trained with pre-defined and unlearnable Σ1 = Σ2 =
0.52I. Other hyperparameters and training settings is identical to the MNIST experiment for linear
MHVAE with learnable Σ2 above. Fig. 14 also corroborate the convergence of the sets of singular
values {λi}, {ωi} to the theoretical values.

Log-likelihood, KL and AU of HVAE with varied β, ηdec (Table 5): All settings in this experi-
ment are identical to the experiment in Fig. 2(c). Table 5 demonstrates that increasing β1 alleviate
posterior collapse and increasing β2 and ηdec have the opposite effect. We also notice that changing
ηdec greatly affects the log-likelihood of the model, while varying β1, β2 has mixed effects on this
metric.

B RELATED WORKS

Posterior collapse: To avoid posterior collapse, existing approaches modify the training objec-
tive to diminish the effect of KL-regularization term in the ELBO training. This includes heuristic
approaches such as annealing a weight on KL term during training (Bowman et al., 2015; Huang
et al., 2018; Sønderby et al., 2016; Higgins et al., 2016), finding tighter bounds for the marginal log-

20



Published as a conference paper at ICLR 2024

Log-likelihood KL AU

β1

0.25 −229.88 1.09 34%
0.5 −225.89 4.59 89%
1.0 −225.82 8.77 100%
2.0 −226.64 13.00 100%
3.0 −227.49 16.19 100%

β2

0.25 −228.66 18.07 100%
0.5 −226.72 13.04 100%
1.0 −225.82 8.77 100%
2.0 −226.05 4.24 82%
3.0 −227.41 1.98 40%

ηdec

0.25 211.79 18.07 100%
0.5 −225.82 8.77 100%
0.75 −522.61 3.45 68%
1.0 −740.24 0.49 18%
2.0 −1278.18 0.00 0%

Table 5: Test log-likelihood and posterior collapse degree of ReLU two-latent MHVAE trained on
MNIST dataset. As Table 1 suggests, smaller β2 and ηdec mitigate collapse and have more active
units, while β1 has the reverse effect.

likelihood (Burda et al., 2015) or constraining the posterior family to have a minimum KL-distance
with the prior (Razavi et al., 2019). Another line of work avoids this phenomenon by limiting the
capacity of the decoder (Gulrajani et al., 2017; Yang et al., 2017; Semeniuta et al., 2017) or changing
its architecture (Van Den Oord et al., 2017; Dieng et al., 2019; Zhao et al., 2020). (Kinoshita et al.,
2023) proposes a potential way to control posterior collapse by using inverse Lipchitz network in
the decoder. Using hierarchical VAE is also demonstrated to alleviate posterior collapse with good
performances (Child, 2021; Sohn et al., 2015; Maaløe et al., 2017; Vahdat & Kautz, 2020; Maaløe
et al., 2019). However, (Kuzina & Tomczak, 2023) empirically observes that this issue is still present
in current state-of-the-art hierarchical VAE models. On the theoretical side, there have been efforts
to characterize posterior collapse under some restricted settings. (Dai et al., 2017; Lucas et al., 2019;
Rolinek et al., 2019) study the relationship of VAE and probabilistic PCA. Specifically, (Lucas et al.,
2019) showed that linear VAE can recover the true posterior of probabilistic PCA. They also prove
that ELBO does not introduce additional bad local minima with posterior collapse in linear VAE
model. (Dai et al., 2020) argues that posterior collapse is a direct consequence of bad local minima
of the loss surface and prove that a small nonlinear perturbations from the linear VAE can produce
such minima. The work that is more relatable to our work is (Wang & Ziyin, 2022), where they find
the global minima of linear standard VAE and find the conditions when posterior collapse occurs.
Nevertheless, the theoretical understanding of posterior collapse in important VAE models such as
CVAE and HVAE remains limited.

Linear network: Analyzing deep linear networks is an important step in studying deep nonlin-
ear networks. The theoretical analysis of deep nonlinear networks is very challenging and, in fact,
there has been no rigorous theory for deep nonlinear networks yet to the best of our knowledge.
Thus, deep linear networks have been studied to provide insights into the behavior of deep nonlinear
networks. For example, using only linear regression, (Hastie et al., 2022) can recover several phe-
nomena observed in large-scale deep nonlinear networks, including the double descent phenomenon
(Nakkiran et al., 2021). (Saxe et al., 2013; Kawaguchi, 2016; Laurent & von Brecht, 2018; Hardt &
Ma, 2017) empirically show that the optimization of deep linear models exhibits similar properties
to those of the optimization of deep nonlinear models. As pointed out in Saxe et al. (2013), despite
the linearity of their input-output map, deep linear networks have nonlinear gradient descent dy-
namics on weights that change with the addition of each new hidden layer. This nonlinear learning
phenomenon is proven to be similar to those seen in deep nonlinear networks.

In practice, deep linear networks can help improve the training and performance of deep nonlinear
networks Huh et al. (2023); Guo et al. (2021); Arora et al. (2018). Specifically, Huh et al. (2023)
empirically proves that linear overparameterization in nonlinear networks improves generalization
on classification tasks (see Section 4 in Huh et al. (2023)). In particular, Huh et al. (2023) expands
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each linear layer into a succession of multiple linear layers and does not include any non-linearities
in between. Guo et al. (2021) applies a similar strategy for compact networks, and their experiments
show that training such expanded networks yields better results than training the original compact
networks. Arora et al. (2018) shows that linear overparameterization, i.e., the use of a deep linear
network in place of a classic linear model, induces on gradient descent a particular precondition-
ing scheme that can accelerate optimization. The preconditioning scheme that deep linear layers
introduce can be interpreted as using momentum and adaptive learning rate.

C SAMPLE-WISE ENCODER VARIANCE

C.1 CONDITIONAL VAE

In this section, we extend the minimize problem in Eqn. (5) to data-dependent encoder vari-
ance Σ(x). Indeed, assume the training samples are {(xi, yi)}Ni=1 and q(zi|x, y) ∼ N (W1xi +
W2yi,Σi) ∀i ∈ [N ], we have:

−ELBOCV AE(W1,W2,U1,U2,Σ1, . . . ,ΣN )

= −Ex,y

[
Eqϕ(z|x,y) [pθ(y|x, z)]− βDKL(qϕ(z|x, y)||p(z|x))

]
=

1

N

∑
i

Eqϕ(z|x,y)

[
1

η2dec
∥U1zi +U2xi − yi∥2 − βξ⊤i Σ−1

i ξi − β log |Σi|+
β

η2enc
∥zi∥2

]
=

1

N

∑
i

(
1

η2dec

[
∥(U1W1 +U2)xi + (U1W2 − I)yi∥2 + trace(U1ΣiU

⊤
1 )

+ βc2(∥W1xi +W2yi∥2 + trace(Σi))

]
− βd1 − β log |Σi|

)
.

Taking the derivative w.r.t each Σi, we have:

−∂ELBO
∂Σi

=
1

η2dec
(U⊤

1 U1 + βc2I)− βΣ−1
i = 0

⇒ Σi = βη2dec(U
⊤
1 U1 + βc2I)−1. (8)

We have Σi = Σ for all i at optimal, and thus, the above minimizing negative ELBO problem is
equivalent to the training problem in Eqn. (5) that use the same Σ for all data.

C.2 MARKOVIAN HIERARCHICAL VAE

Similarly, we consider the negative ELBO function for MHVAE two latents with data-dependent
encoder variance Σ. Indeed, assume training samples are {xi}Ni=1, and dropping the multiplier 1/2
and some constants in the negative ELBO, we have:

−ELBOHVAE(W1,W2,U1,U2, {Σ1,i}Ni=1, {Σ2,i}Ni=1) = −Ex

[
Eqϕ(z1|x)qϕ(z2|z1)(log pθ(x|z1))

− β1Eqϕ(z2|z1)(DKL(qϕ(z1|x)||pθ(z1|z2))− β2ExEqϕ(z1|x)(DKL(qϕ(z2|z1)||pθ(z2))
]

=
1

N

(
N∑
i=1

1

η2dec

[
∥U1W1xi − xi∥2 + trace(U1Σ1,iU

⊤
1 ) + β1∥U2W2W1xi −W1xi∥2

+ β1 trace(U2Σ2,iU
⊤
2 ) + β1 trace((U2W2 − I)Σ1,i(U2W2 − I)⊤)

]
+ c2β2

(
∥W2W1x∥2 + trace(W2Σ1,iW

⊤
2 ) + trace(Σ2,i)

)
− β1 log |Σ1,i| − β2 log |Σ2,i|

)
,

where the details of the above derivation are from the proof in Appendix F.2.
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Taking the derivative w.r.t each Σ1,i and Σ2,i, ∀i ∈ [N ], we have at critical points of −ELBOHVAE:

−N
∂ELBO
∂Σ1,i

=
1

η2dec
(U⊤

1 U1 + β1(U2W2 − I)⊤(U2W2 − I) + c2β2W
⊤
2 W2)− β1Σ

−1
1,i = 0

⇒Σ1,i = β1η
2
dec(U

⊤
1 U1 + β1(U2W2 − I)⊤(U2W2 − I) + c2β2W

⊤
2 W2)

−1.

−N
∂ELBO
∂Σ2,i

=
1

η2dec
(β1U

⊤
2 U2 + c2β2I)− β2Σ

−1
2,i = 0

⇒Σ2,i =
β2

β1
η2dec(U

⊤
2 U2 + c2

β2

β1
I)−1. (9)

Thus, we have at optimal, Σ1,i and Σ2,i are all equal for all input data. Hence, we can consider
the equivalent problem of minimizing the negative ELBO with same encoder variances Σ1 and Σ2

for all training samples. Similar conclusions for linear standard VAE can be obtained by letting
U2 = W2 = Σ2,1 = . . . = Σ2,N = 0 in the above arguments.

D PROOFS FOR CONDITIONAL VAE
In subsection D.1, we prove Theorem 2 in main paper. We also extend the model from one linear
layer in each network to deep linear ones and prove similar results in subsection D.2.

D.1 LINEAR CONDITIONAL VAE

We consider the conditional VAE as described in Section 4.1. For any input data (x, y), we have:

Encoder: q(z|x, y) = N (W1x+W2y,Σ),W1 ∈ Rd1×D0 ,W2 ∈ Rd1×D2 .

Decoder: p(y|x, z) = N (U1z +U2x, η
2
decI),U1 ∈ RD2×d1 ,U2 ∈ RD2×D0 .

Prior: p(z|x) = N (0, η2encI),

note that we can write z = W1x+W2y + ξ with ξ ∼ N (0,Σ) for a given (x, y).

To train CVAE, we minimize the following loss function (Sohn et al., 2015; Doersch, 2016; Walker
et al., 2016):

LCV AE = −Ex,y

[
Eqϕ(z|x,y) [pθ(y|x, z)] + βDKL(qϕ(z|x, y)||p(z|x))

]
= Ex,y,ξ

[
1

η2dec
∥U1z +U2x− y∥2 − βξ⊤Σ−1ξ − β log |Σ|+ β

η2enc
∥z∥2

]
=

1

η2dec
Ex,y

[
∥(U1W1 +U2)x+ (U1W2 − I)y∥2 + trace(U1Σ1U

⊤
1 )

+ βc2(∥W1x+W2y∥2 + trace(Σ))
]
− β log |Σ|,

where c := η2dec/η
2
enc. Note that we have dropped the multiplier 1/2 and constants in the above

derivation.

Proof of Theorem 2. For brevity in the subsequent analysis, we further denote V1 = W1PAΦ
1/2 ∈

Rd1×d0 ,V2 = W2PBΨ
1/2 ∈ Rd1×d2 ,T2 = U2PAΦ

1/2 ∈ RD2×d0 and D = PBΨ
1/2 ∈

RD2×d2 , we have:

E(∥(U1W1 +U2)x+ (U1W2 − I)y∥2) = E(∥(U1W1 +U2)PAΦ
1/2x̃+ (U1W2 − I)PBΨ

1/2ỹ∥2)
= ∥U1V1 +T2∥2F + ∥U1V2 −D∥2F + 2 trace((U1V1 +T2)Z(U1V2 −D)⊤),

E(∥W1x+W2y∥2) = E(∥V1x̃+V2ỹ∥2) = ∥V1∥2F + ∥V2∥2F + 2 trace(V1ZV
⊤
2 ).
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Therefore, the negative ELBO becomes

LCVAE(U1,V1,V2,T2,Σ) =

1

η2dec

[
∥U1V1 +T2∥2F + ∥U1V2 −D∥2F + 2 trace((U1V2 −D)⊤(U1V1 +T2)Z)︸ ︷︷ ︸

=∥(U1V1+T2)x̃+(U1V2−I)ỹ∥2

+ trace((U⊤
1 U1 + βc2I)Σ1) + βc2 (∥V1∥2F + ∥V2∥2F + 2 trace(V1ZV

⊤
2 )︸ ︷︷ ︸

=∥V1x̃+V2ỹ∥2

)

]
− β log |Σ|.

Next, we have at critical points of LCV AE :

∂L
∂Σ

=
1

η2dec
(U⊤

1 U1 + βc2I)− βΣ−1 = 0

⇒Σ = βη2dec(U
⊤
1 U1 + βc2I)−1 (10)

Plugging Σ = βη2dec(U
⊤
1 U1 + βc2I)−1 in the loss function LCV AE and dropping some constants,

we have:

L
′

CV AE =
1

η2dec

[
∥U1V1 +T2∥2F + ∥U1V2 −D∥2F + 2 trace((U1V1 +T2)Z(U1V2 −D)⊤)

+ βc2
(
∥V1∥2F + ∥V2∥2F + 2 trace(V1ZV

⊤
2 )
) ]

+ β log |U⊤
1 U1 + βc2I|. (11)

We have, at critical points of L′

CV AE :

η2dec

2

∂L′

∂T2
= (U1V1 +T2) + (U1V2 −D)Z⊤ = 0.

η2dec

2

∂L′

∂V1
= U⊤

1 (U1V1 +T2) +U⊤
1 (U1V2 −D)Z⊤ + βc2V1 + βc2V2Z

⊤ = 0.

η2dec

2

∂L′

∂V2
= U⊤

1 (U1V2 −D) +U⊤
1 (U1V1 +T2)Z+ βc2V2 + βc2V1Z = 0.

η2dec

2

∂L′

∂U1
= (U1V1 +T2)V

⊤
1 + (U1V2 −D)V⊤

2 +U1(V2Z
⊤V⊤

1 +V1ZV
⊤
2 )−DZ⊤V⊤

1

+T2ZV
⊤
2 + βη2decU1(U

⊤
1 U1 + βc2I)−1 = 0. (12)

From ∂L
′

∂T2
= 0, we have:

T2 = −U1V1 − (U1V2 −D)Z⊤. (13)

From ∂L
′

∂V1
= 0 and Eqn. (13), we have:

V1 +V2Z
⊤ = 0. (14)

From ∂L
′

∂V2
= 0 and Eqn. (14), we have:

U⊤
1 (U1V2 −D)−U⊤

1 (U1V2 −D)Z⊤Z+ βc2V2 − βc2V2Z
⊤Z = 0

⇔U⊤
1 (U1V2 −D)(I− Z⊤Z) = −βc2V2(I− Z⊤Z)

⇔U⊤
1 (U1W2 − I)D(I− Z⊤Z) = −βc2W2D(I− Z⊤Z)

⇔W2D(I− Z⊤Z) = (U⊤
1 U1 + βc2I)−1U⊤

1 D(I− Z⊤Z)

⇒W2E = (U⊤
1 U1 + βc2I)−1U⊤

1 E, (15)
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where we define E := D(I− Z⊤Z)D⊤ for brevity.

Using above substitutions in Eqn. (13), Eqn. (14) and Eqn. (15), we have:

∥U1V1 +T2∥2F + ∥U1V2 −D∥2F + 2 trace((U1V1 +T2)Z(U1V2 −D)⊤)

= ∥(U1V2 −D)Z⊤∥2F + ∥U1V2 −D∥2F − 2 trace((U1V2 −D)Z⊤Z(U1V2 −D)⊤)

= trace((U1V2 −D)⊤(U1V2 −D)(I− Z⊤Z))

= trace((U1W2 − I)⊤(U1W2 − I)D(I− Z⊤Z)D⊤)

= trace(W⊤
2 U

⊤
1 U1W2E)− 2 trace(U1W2E) + trace(E).

∥V1∥2F + ∥V2∥2F + 2 trace(V1ZV
⊤
2 ) = ∥V2Z

⊤∥2F + ∥V2∥2F − 2 trace(V2Z
⊤ZV⊤

2 )

= trace(V2(I− Z⊤Z)V⊤
2 ) = trace(W2EW⊤

2 ).

trace(W⊤
2 U

⊤
1 U1W2E)− 2 trace(U1W2E) + βc2 trace(W2EW⊤

2 )

= trace((U⊤
1 U1 + βc2I)W2EW⊤

2 )− 2 trace(U1W2E)

= trace(U⊤
1 EU1(U

⊤
1 U1 + βc2I)−1)− 2 trace(U1(U

⊤
1 U1 + βc2I)−1U⊤

1 E)

= − trace(U1(U
⊤
1 U1 + βc2I)−1U⊤

1 E).

Denote {λi}d1
i=1 and {θi}d2

i=1 be the singular values of U1 and E in non-increasing order, respec-
tively. If d2 < d1, we denote θi = 0, with d2 < i ≤ d1. We now have, after dropping constant
trace(E):

L
′

CV AE = − 1

η2dec
trace(U1(U

⊤
1 U1 + βc2I)−1U⊤

1 E) + β log |U⊤
1 U1 + βc2I|

≥ − 1

η2dec

d1∑
i=1

λ2
i θ

2
i

λ2
i + βc2

+

d1∑
i=1

β log(λ2
i + βc2)

= − 1

η2dec

d1∑
i=1

θ2i +
β

η2dec

d1∑
i=1

c2θ2i
λ2
i + βc2

+

d1∑
i=1

β log(λ2
i + βc2),

where we used Von Neumann trace inequality for U1(U
⊤
1 U1 + βc2I)−1U⊤

1 and E. We consider
the function below:

g(t) =
1

η2dec

c2θ2

t
+ log(t), t ≥ βc2. (16)

It is easy to see that g(t) is minimized at t∗ = c2θ2

η2
dec

if θ2 ≥ βη2dec. Otherwise, if θ2 < βη2dec,

t∗ = βc2. If θ = 0, clearly log(λ2 + βc2) is minimized at λ = 0. Applying this result for each λi,
we have:

λ∗
i =

1

ηenc

√
max(0, θ2i − βη2dec), ∀ i ∈ [d1], (17)

note that the RHS can also be applied when θi = 0 for i ∈ [d1].

Consider the global parameters that Σ is diagonal. The entries of Σ can be calculated from Eqn.
(10):

σ
′

i =

{√
βηencηdec/θi, if θi ≥

√
βηdec

ηenc, if θi <
√
βηdec

, (18)

where {σ′

i} is a permutation of {σi}.

Remark 3. Posterior collapse also exists in CVAE. When at the global parameters such that Σ is
diagonal, we have U⊤

1 U1 is diagonal. Thus, U1 can be decomposed as U1 = RΩ
′

with orthonor-
mal matrix R ∈ RD0×D0 and Ω

′
is a diagonal matrix with diagonal entries are a permutation of

diagonal entries of Ω. Hence, U1 will have d1 − r zero columns with r := rank(U1).
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If there is a column (says, i-th column) of U1 is zero column, then in the loss function in Eqn. (5),
the i-th row of W1x + W2y will only appear in the term Ex,y(∥W1x + W2y∥2F ). Thus, at the
global minimum, Ex,y(∥W1x +W2y∥2F ) will be pushed to 0. Thus, for each pair of input (x, y),
we have w1⊤

i x+w2⊤
i y = 0 (posterior collapse).

D.2 EXTENDING TO DEEP LINEAR NETWORKS

In this subsection, we extend the results from a linear layer in the encoder and decoder to deep linear
network without bias term. We assume that each deep linear module includes M(M ≥ 2) matrices
as following:

Encoder: q(z|x, y) = N (WMWM−1 . . .W1x+TMTM−1 . . .T1y,Σ),

where WM ∈ Rd1×D0 ,WM−1, . . . ,W1 ∈ RD0×D0 and TM ∈ Rd1×D2 ,TM−1, . . . ,T1 ∈ RD2×D2 .

Decoder: p(y|x, z) = N (UMUM−1 . . .U1z + SMSM−1 . . .S1x, η
2
decI),

where UM ∈ RD2×d1 ,UM−1, . . . ,U1 ∈ Rd1×d1 and SM ∈ RD2×D0 ,SM−1, . . . ,S1 ∈ RD0×D0 .

Prior: p(z|x) = N (0, η2encI),

note that we can write z = WMWM−1 . . .W1x +TMTM−1 . . .T1y + ξ with ξ ∼ N (0,Σ) for
a given (x, y).

To train CVAE, we minimize the following loss function:

LCV AE = −Ex,y

[
Eqϕ(z|x,y) [pθ(y|x, z)] + βDKL(qϕ(z|x, y)||p(z|x))

]
= Ex,y,ξ

[
1

η2dec
∥UMUM−1 . . .U1z + SMSM−1 . . .S1x− y∥2 − βξ⊤Σ−1ξ − β log |Σ|+ β

η2enc
∥z∥2

]
=

1

η2dec
Ex,y

[
∥(UM . . .U1WM . . .W1 + SM . . .S1)x+ (UM . . .U1TM . . .T1 − I)y∥2

+ trace(UM . . .U1Σ1U
⊤
1 . . .U⊤

M ) + βc2(∥WM . . .W1x+TM . . .T1y∥2 + trace(Σ))
]
− β log |Σ|,

where c := η2dec/η
2
enc. Note that we have dropped the multiplier 1/2 and constants in the above

derivation.

Proof. For brevity, we denote W̄1 = W1PAΦ
1/2 ∈ Rd1×d0 , T̄1 = T1PBΨ

1/2 ∈ Rd1×d2 , S̄1 =
S1PAΦ

1/2 ∈ RD2×d0 and D = PBΨ
1/2 ∈ RD2×d2 , we have:

E
[
∥(UM . . .U1WM . . .W1 + SM . . .S1)x+ (UM . . .U1TM . . .T1 − I)y∥2

= E(∥(UM . . .U1WM . . .W̄1 + SM . . . S̄1)x̃+ (UM . . .U1TM . . . T̄1 −D)ỹ∥2)
= ∥UM . . .U1WM . . .W̄1 + SM . . . S̄1∥2F + ∥UM . . .U1TM . . . T̄1 −D∥2F
+ 2 trace((UM . . .U1WM . . .W̄1 + SM . . . S̄1)Z(UM . . .U1TM . . . T̄1 −D)⊤).

E(∥WM . . .W1x+TM . . .T1y∥2) = E(∥WM . . .W̄1x̃+TM . . . T̄1ỹ∥2)
= ∥WM . . .W̄1∥2F + ∥TM . . . T̄1∥2F + 2 trace(WM . . .W̄1ZT̄

⊤
1 . . .T⊤

M−1T
⊤
M ).

Next, we have at critical points of LCV AE :

∂L
∂Σ

=
1

η2dec
(U⊤

1 . . .U⊤
M−1U

⊤
MUM . . .U1 + βc2I)− βΣ−1 = 0

⇒Σ = βη2dec(U
⊤
1 . . .U⊤

M−1U
⊤
MUM . . .U1 + βc2I)−1 (19)
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Plugging Σ = βη2dec(U
⊤
1 . . .U⊤

MUM . . .U1 + βc2I)−1 in the loss function LCV AE and dropping
some constants, we have:

L
′

CV AE =
1

η2dec

[
∥UM . . .U1WM . . .W̄1 + SM . . . S̄1∥2F + ∥UM . . .U1TM . . . T̄1 −D∥2F

+ 2 trace((UM . . .U1WM . . .W̄1 + SM . . . S̄1)Z(UM . . .U1TM . . . T̄1 −D)⊤)

+ βc2
(
∥WM . . .W̄1∥2F + ∥TM . . . T̄1∥2F + 2 trace(WM . . .W̄1ZT̄

⊤
1 . . .T⊤

M−1T
⊤
M )
) ]

+ β log |U⊤
1 . . .U⊤

MUM . . .U1 + βc2I|, (20)

We have, at critical points of L′

CV AE :

η2dec

2

∂L′

∂(SM . . . S̄1)
= UM . . .U1WM . . .W̄1 + SM . . . S̄1 + (UM . . .U1TM . . . T̄1 −D)Z⊤ = 0.

η2dec

2

∂L′

∂(WM . . .W̄1)
= U⊤

1 . . .U⊤
M (UM . . .U1WM . . .W̄1 + SM . . . S̄1)

+U⊤
1 . . .U⊤

M (UM . . .U1TM . . . T̄1 −D)Z⊤ + βc2WM . . .W̄1 + βc2TM . . . T̄1Z
⊤ = 0.

η2dec

2

∂L′

∂(TM . . . T̄1)
= U⊤

1 . . .U⊤
M (UM . . .U1TM . . . T̄1 −D)

+U⊤
1 . . .U⊤

M (UM . . .U1WM . . .W̄1 + SM . . . S̄1)Z+ βc2TM . . . T̄1 + βc2WM . . .W̄1Z = 0.

η2dec

2

∂L′

∂(UM . . .U1)
= (UM . . .U1WM . . .W̄1 + SM . . . S̄1)W̄

⊤
1 . . .W⊤

M

+ (UM . . .U1TM . . . T̄1 −D)V⊤
2 +UM . . .U1(TM . . . T̄1Z

⊤V⊤
1 +WM . . .W̄1ZV

⊤
2 )

−DZ⊤V⊤
1 + SM . . . S̄1ZV

⊤
2 + βη2decUM . . .U1(U

⊤
1 . . .U⊤

MUM . . .U1 + βc2I)−1 = 0.

From ∂L
′

∂(SM ...S̄1)
= 0, we have:

SM . . . S̄1 = −UM . . .U1WM . . .W̄1 − (UM . . .U1TM . . . T̄1 −D)Z⊤. (21)

From ∂L
′

∂(WM ...W̄1)
= 0 and Eqn. (21), we have:

WM . . .W̄1 +TM . . . T̄1Z
⊤ = 0. (22)

From ∂L
′

∂(TM ...T̄1)
= 0 and Eqn. (22), we have:

U⊤
1 . . .U⊤

M (UM . . .U1TM . . . T̄1 −D)−U⊤
1 . . .U⊤

M (UM . . .U1TM . . . T̄1 −D)Z⊤Z

+ βc2TM . . . T̄1 − βc2TM . . . T̄1Z
⊤Z = 0

⇔U⊤
1 . . .U⊤

M (UM . . .U1TM . . . T̄1 −D)(I− Z⊤Z) = −βc2TM . . . T̄1(I− Z⊤Z)

⇔U⊤
1 . . .U⊤

M (UM . . .U1TM . . .T1 − I)D(I− Z⊤Z) = −βc2TM . . .T1D(I− Z⊤Z)

⇔TM . . .T1D(I− Z⊤Z) = (U⊤
1 . . .U⊤

MUM . . .U1 + βc2I)−1U⊤
1 . . .U⊤

MD(I− Z⊤Z)

⇒TM . . .T1E = (U⊤
1 . . .U⊤

MUM . . .U1 + βc2I)−1U⊤
1 E, (23)

where we define E := D(I− Z⊤Z)D⊤ for brevity.
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Using above substitutions in Eqn. (21), (22) and (23), we have:
∥UM . . .U1WM . . .W̄1 + SM . . . S̄1∥2F + ∥UM . . .U1TM . . . T̄1 −D∥2F
+ 2 trace((UM . . .U1WM . . .W̄1 + SM . . . S̄1)Z(UM . . .U1TM . . . T̄1 −D)⊤)

= ∥(UM . . .U1TM . . . T̄1 −D)Z⊤∥2F + ∥UM . . .U1TM . . . T̄1 −D∥2F
− 2 trace((UM . . .U1TM . . . T̄1 −D)Z⊤Z(UM . . .U1TM . . . T̄1 −D)⊤)

= trace((UM . . .U1TM . . . T̄1 −D)⊤(UM . . .U1TM . . . T̄1 −D)(I− Z⊤Z))

= trace((UM . . .U1TM . . .T1 − I)⊤(UM . . .U1TM . . .T1 − I)D(I− Z⊤Z)D⊤)

= trace(T⊤
1 . . .T⊤

MU⊤
1 . . .U⊤

MUM . . .U1TM . . .T1E)− 2 trace(UM . . .U1TM . . .T1E) + trace(E).

∥WM . . .W̄1∥2F + ∥TM . . . T̄1∥2F + 2 trace(WM . . .W̄1ZT
⊤
1 . . .T⊤

M )

= ∥TM . . . T̄1Z
⊤∥2F + ∥TM . . . T̄1∥2F − 2 trace(TM . . . T̄1Z

⊤ZT⊤
1 . . .T⊤

M )

= trace(TM . . . T̄1(I− Z⊤Z)T⊤
1 . . .T⊤

M ) = trace(TM . . .T1ET⊤
1 . . .T⊤

M ).

trace(T⊤
1 . . .T⊤

MU⊤
1 . . .U⊤

MUM . . .U1TM . . .T1E)− 2 trace(UM . . .U1TM . . .T1E)

+ βc2 trace(TM . . .T1ET⊤
1 . . .T⊤

M )

= trace((U⊤
1 . . .U⊤

MUM . . .U1 + βc2I)TM . . .T1ET⊤
1 . . .T⊤

M )− 2 trace(UM . . .U1TM . . .T1E)

= trace(U⊤
1 . . .U⊤

MEUM . . .U1(U
⊤
1 . . .U⊤

MUM . . .U1 + βc2I)−1)

− 2 trace(UM . . .U1(U
⊤
1 . . .U⊤

MUM . . .U1 + βc2I)−1U⊤
1 . . .U⊤

ME)

= − trace(UM . . .U1(U
⊤
1 . . .U⊤

MUM . . .U1 + βc2I)−1U⊤
1 . . .U⊤

ME).

Denote {λi}d1
i=1 and {θi}d2

i=1 be the singular values of UM . . .U1 and E in non-increasing order,
respectively. If d2 < d1, we denote θi = 0, with d2 < i ≤ d1. We now have, after dropping constant
trace(E):

L
′

CV AE = − 1

η2dec
trace(UM . . .U1(U

⊤
1 . . .U⊤

MUM . . .U1 + βc2I)−1U⊤
1 . . .U⊤

ME)

+ β log |U⊤
1 . . .U⊤

MUM . . .U1 + βc2I|

≥ − 1

η2dec

d1∑
i=1

λ2
i θ

2
i

λ2
i + βc2

+

d1∑
i=1

β log(λ2
i + βc2)

= − 1

η2dec

d1∑
i=1

θ2i +
β

η2dec

d1∑
i=1

c2θ2i
λ2
i + βc2

+

d1∑
i=1

β log(λ2
i + βc2),

where we used Von Neumann trace inequality for UM . . .U1(U
⊤
1 . . .U⊤

MUM . . .U1 +
βc2I)−1U⊤

1 . . .U⊤
M and E. We consider the function below:

g(t) =
1

η2dec

c2θ2

t
+ log(t), t ≥ βc2. (24)

It is easy to see that g(t) is minimized at t∗ = c2θ2

η2
dec

if θ2 ≥ βη2dec. Otherwise, if θ2 < βη2dec,

t∗ = βc2. If θ = 0, clearly log(λ2 + βc2) is minimized at λ = 0. Applying this result for each λi,
we have:

λ∗
i =

1

ηenc

√
max(0, θ2i − βη2dec), ∀ i ∈ [d1] (25)

Consider the global parameters that Σ is diagonal. The entries of Σ can be calculated from Eqn.
(19):

σ
′

i =

{√
βηencηdec/θi, if θi ≥

√
βηdec

ηenc, if θi <
√
βηdec

, (26)

where {σ′

i} is a permutation of {σi}.
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Remark 4. Similar as linear CVAE, for deep linear CVAE, when Σ =
βη2dec(U

⊤
1 . . .U⊤

MUM . . .U1 + βc2I)−1 is chosen to be diagonal on the set of global pa-
rameters, we have U⊤

1 . . .U⊤
MUM . . .U1 is diagonal. Thus, when there exists some i ∈ [d1] such

that λi = 0 (i.e, UM . . .U1 is low-rank), UM . . .U1 will have d1 − rank(UM . . .U1) zero rows,
which corresponds with the dimensions of the latent that collapse to the prior.

E PROOFS FOR STANDARD VAE
In this section, we prove Theorem 1 (see Section E.1). We also derive the similar results for learnable
Σ case in Section E.2.

Recall that A := Ex(xx
⊤) = PAΦP

⊤
A, x̃ = Φ−1/2P⊤

Ax and Z := Ex̃(xx̃
⊤) ∈ RD0×d0 . Also, let

V1 = W1PAΦ
1/2 ∈ Rd1×D.

We minimize the negative ELBO loss function (after dropping multiplier 1/2 and some constants):

LV AE = Ex

(
− Eq(z|x)[log p(x|z)] + βDKL(q(z|x)||p(z))

)
=

1

η2dec
Ex

[
∥UWx− y∥2 + trace(UΣU⊤) + βc2(∥Wx∥2 + trace(Σ))

]
− β log |Σ|

=
1

η2dec

[
∥UV − Z∥2F + trace(U⊤UΣ) + βc2∥V∥2F + βc2 trace(Σ)

]
− β log |Σ|. (27)

E.1 UNLEARNABLE DIAGONAL ENCODER VARIANCE Σ

Proof of Theorem 1. Since the Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
d1
) is fixed, we can drop the term

βc2 trace(Σ):

LV AE =
1

η2dec

[
∥UV − Z∥2F + trace(U⊤UΣ) + βc2∥V∥2F

]
. (28)

At critical points of LV AE :

1

2

∂L
∂V

=
1

η2dec
(U⊤(UV − Z) + βc2V) = 0.

1

2

∂L
∂U

=
1

η2dec
((UV − Z)V⊤ +UΣ) = 0. (29)

From ∂L
∂V = 0, we have:

V = (U⊤U+ βc2I)−1U⊤Z, (30)

and:

βc2V⊤V = −V⊤U⊤(UV − Z). (31)

Denoting {θi}d0
i=1 and {ωi}min(d0,d1)

i=1 with non-increasing order be the singular values of Z and
U, respectively. Let Θ and Ω be the singular matrices of Z and U with non-increasing diagonal,
respectively. We also denote Σ′ = diag(σ′2

1 , . . . , σ′2
d1
) as an rearrangements of Σ such that σ′2

1 ≤
σ′2
2 ≤ . . . ≤ σ′2

d1
. Thus, Σ = TΣ

′
T⊤ with some orthonormal matrix T ∈ Rd1×d1 . It is clear that

when all diagonal entries are distinct, T is a permutation matrix with only ±1’s and 0’s. When there
are some equal entries in Σ, T may includes some orthonormal blocks on the diagonal when these
equal entries are near to each other.
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Plugging Eqn. (30) and Eqn. (31) into the loss function in Eqn. (28), we have:
η2decLV AE = ∥Z∥2F − trace(ZV⊤U⊤) + trace(U⊤UΣ)

= ∥Z∥2F − trace(ZZ⊤U(U⊤U+ βc2I)−1U⊤) + trace(U⊤UTΣ
′
T⊤)

≥ ∥Z∥2F − trace(ΘΘ⊤Ω(Ω⊤Ω+ βc2I)−1Ω⊤) + trace(Ω⊤ΩΣ
′
)

=

d0∑
i=1

θ2i −
d1∑
i=1

ω2
i θ

2
i

ω2
i + βc2

+

d1∑
i=1

ω2
i σ

′2
i

=

d0∑
i=d1

θ2i +

d1∑
i=1

βc2θ2i
ω2
i + βc2

+

d1∑
i=1

ω2
i σ

′2
i , (32)

where we use two trace inequalities:
trace(ZZ⊤U(U⊤U+ βc2I)−1U⊤) ≤ trace(ΘΘ⊤Ω(Ω⊤Ω+ βc2I)−1Ω⊤), (33)

trace(U⊤UΣ) ≥ trace(Ω⊤ΩΣ
′
). (34)

The first inequality is from Von Neumann inequality with equality holds if and only if ZZ⊤ and
U(U⊤U+ βc2I)−1U⊤ are simultaneous ordering diagonalizable by some orthonormal matrix R.
The second inequality is Ruhe’s trace inequality, with equality holds if and only if there exists an
orthonormal matrix T that Σ = T⊤Σ

′
T and T⊤U⊤UT is diagonal matrix with decreasing entries.

By optimizing each ωi in Eqn. (32), we have that:

ω∗
i =

√
max

(
0,

√
βc

σ′
1

(θi −
√
βcσ′

1)

)
. (35)

In order to let the inequalities above to become equality, we have that both R⊤UU⊤R and
T⊤U⊤UT are diagonal matrix with decreasing entries. Thus, U = RΩT⊤. From (30), by letting
Z = RΘS with orthornormal matrix S ∈ Rd0×d0 , we have the singular values (in decreasing order)
of V as:

V = T(Ω⊤Ω+ βc2I)−1ΩΦ1/2S,

λ∗
i =

√
max

(
0,

σ
′
1√
βc

(θi −
√
βcσ

′
1)

)
. (36)

Remark 5. In the case when V has d1−r zero singular values with r := rank(V), it will depend on
matrix T that decides whether posterior collapse happen or not. Specifically, if all values {σi}d1

i=1

are distinct, T is a permutation matrix and hence, U⊤U is a diagonal matrix. Thus, using the same
arguments as in the proof E.2, we have partial collapse will happen (although the variance of the
posterior can be different from η2enc).

On the other hand, if Σ is chosen to be isotropic, T can be any orthonormal matrix and thus the
number of zero rows of V can vary from 0 (no posterior collapse) to d1 − r (partial posterior
collapse). It is clear that when θi < cσ′

i ∀ i, W = 0 and we observe a full posterior collapse.

E.2 LEARNABLE ENCODER VARIANCE Σ

For learnable encoder variance Σ in linear standard VAE, we have the following results.
Theorem 4 (Learnable Σ). Let Z := Ex(xx̃

⊤) = RΘS is the SVD of Z with singular values
{θi}d0

i=1 in non-increasing order and define V := WPAΦ
1/2, the optimal solution of (U∗,W∗,Σ∗)

of LVAE is given by:
U∗ = RΩT⊤,V∗ = TΛS⊤,Σ∗ = βη2dec(U

⊤U+ βc2I)−1,

where T ∈ Rd1×d1 is an orthonormal matrices. The diagonal elements of Ω and Λ are as follows,
∀i ∈ [d1]:

ω∗
i =

1

ηenc

√
max(0, θ2i − βη2dec), λ∗

i =
ηenc

θi

√
max(0, θ2i − βη2dec).

If d0 < d1, we denote θi = 0 for d0 < i ≤ d1.
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Now we prove Theorem 4.

Proof of Theorem 4. Recall the loss function in Eqn. (27):

LV AE =
1

η2dec

[
∥UV − Z∥2F + trace(U⊤UΣ) + βc2∥V∥2F + βc2 trace(Σ)

]
− β log |Σ|. (37)

We have at critical points of LV AE :

∂L
∂Σ

=
1

η2dec
(U⊤U+ βc2I)− βΣ−1 = 0

⇒Σ = βη2dec(U
⊤U+ βc2I)−1. (38)

Plug Σ = βη2dec(U
⊤U+ βc2I)−1 into LV AE and dropping constant terms, we have:

L
′

V AE =
1

η2dec

[
∥UV − Z∥2F + βc2∥V∥2F

]
+ β log |U⊤U+ βc2I|. (39)

At critical points of L′

V AE :

1

2

∂L′

∂V
=

1

η2dec
(U⊤(UV − Z) + βc2V) = 0,

1

2

∂L′

∂U
=

1

η2dec
(UV − Z)V⊤ +U(U⊤U+ βc2I)−1 = 0. (40)

From ∂L
′

∂V = 0, we have:

V = (U⊤U+ βc2I)−1U⊤Z, (41)

and:

βc2V⊤V = −V⊤U⊤(UV − Z). (42)

Denoting {θi}d0
i=1 and {ωi}min(d0,d1)

i=1 with decreasing order be the singular values of Z and U,
respectively. Let Θ and Ω be the singular matrices of Z and U, respectively. Plug Eqn. (41) and
(42) to L′

, we have:

L
′

V AE =
1

η2dec
[∥Z∥2F − trace(ZV⊤U⊤)] + β log |U⊤U+ βc2I|

=
1

η2dec
[∥Z∥2F − trace(ZZ⊤U(U⊤U+ βc2I)−1U⊤)] + β log |U⊤U+ βc2I|,

≥ 1

η2dec
[∥Z∥2F − trace(ΘΘ⊤Ω(Ω⊤Ω+ βc2I)Ω⊤)] + β log |U⊤U+ βc2I|

=
1

η2dec

[
d0∑
i=1

θ2i −
d1∑
i=1

ω2
i θ

2
i

ω2
i + βc2

]
+

d1∑
i=1

β log(ω2
i + βc2)

=
1

η2dec

[
d0∑

i=d1

θ2i +

d1∑
i=1

βc2θ2i
ω2
i + βc2

]
+

d1∑
i=1

β log(ω2
i + βc2), (43)

where we use Von Neumann inequality for ZZ⊤ and U(U⊤U+c2I)−1U⊤. The equality condition
holds if these two symmetric matrices are simultaneous ordering diagonalizable (i.e., there exists an
orthonormal matrix diagonalize both matrices such that the eigenvalues order of both matrices are
in decreasing order).

Consider the function:

h(ω) =
c2θ2/η2dec

ω2 + βc2
+ log(ω2 + βc2), ω ≥ 0 (44)
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This function is minimized at ω∗ =
√

c2

η2
dec
(θ2 − βη2dec) if θ2 ≥ η2dec. Otherwise, if θ2 < η2dec,

ω∗ = 0. Applying this result for each ωi in Eqn. (43), we have:

ω∗
i =

1

ηenc

√
max(0, θ2i − βη2dec), ∀ i ∈ [d1] (45)

Denote {λi}min(d0,d1)
i=1 as the singular values of V and Λ as corresponding singular matrix. At the

minimizer of LV AE , U and Z shares a set of left singular vectors due to equality of Von Neumann
trace inequality. Thus, using these shared singular vectors, from Eqn. (41), the singular values of V
are:

λ∗
i =

ηenc

θi

√
max(0, θ2i − βη2dec). (46)

From Eqn. (38), now we consider Σ that are diagonal in the set of global parameters of the loss
function. We have:

σ′
i =

{√
βηencηdec/θi, if θi ≥

√
βηdec

ηenc, if θi <
√
βηdec

, (47)

where {σ′
i}

d1
i=1 is a permutation of {σi}d1

i=1. Since Σ = βη2dec(U
⊤U + βc2I)−1 at optimal, if

we choose Σ to be diagonal, we have U⊤U diagonal at the global optimum. Thus, U can be
decomposed as U = RΩ′ with orthonormal matrix R ∈ RD0×D0 and Ω′ is a diagonal matrix with
diagonal entries a permutation of diagonal entries of Ω. Hence, U will have d1−r zero columns with
r := rank(U). From the loss function in Eqn. (27), we see that the corresponding rows of V with
the zero columns of U, will have no effect on the term ∥UV − Z∥. Thus, the only term in the loss
function that relates to these rows of V is ∥V∥F . To minimize ∥V∥F , these rows of V will converge
to zero rows. Therefore, from Wx = Vx̃, we see that these zero rows will correspond with latent
dimensions that collapse to the prior distribution of that dimension (partial posterior collapse).

F PROOFS FOR MARKOVIAN HIERARCHICAL VAE WITH 2 LATENTS

In this section, we prove Theorem 3 in Section F.2. In subsection F.2.1 of the same section, we
extend this result by covering deep linear settings instead of one linear layer in the encoder and
decoder modules. We also analyze the case that both encoder variances Σ1 and Σ2 are unlearnable
isotropic in Section F.1. We have:

Encoder: q(z1|x) ∼ N (W1x,Σ1),W1 ∈ Rd1×d0 ,Σ1 ∈ Rd1×d1

q(z2|z1) ∼ N (W2z1,Σ2),W2 ∈ Rd2×d1 ,Σ2 ∈ Rd2×d2

Decoder: p(z1|z2) ∼ N (U2z2, η
2
decI),U2 ∈ Rd1×d2 , (48)

p(y|z1) ∼ N (U1z1, η
2
decI),U1 ∈ RD×d1 .

Prior: p(z2) ∼ N (0, η2encI),

Let A := Ex(xx
⊤) = PAΦP

⊤
A, x̃ = Φ−1/2P⊤

Ax and Z := Ex(xx̃
⊤) ∈ RD0×d0 . Also, let

V1 = W1PAΦ
1/2 ∈ Rd1×D, thus V1V

⊤
1 = W1AW

⊤
1 = Ex(W1xx

⊤W⊤
1 ).
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We minimize the negative ELBO loss function for MHVAE with 2 layers of latent:

LHVAE = −Ex

[
Eqϕ(z1|x)qϕ(z2|z1)(log pθ(x|z1))− β1Eqϕ(z2|z1)(DKL(qϕ(z1|x)||pθ(z1|z2))

− β2ExEqϕ(z1|x)(DKL(qϕ(z2|z1)||pθ(z2))
]
.

= −ExEqϕ(z1|x)qϕ(z2|z1) [log p(x|z1) + β1 log p(z1|z2) + β2 log p(z2)− β1 log q(z1|x)− β2 log q(z2|z1)]

= Ex,ξ1,ξ2

[
1

η2dec
∥U1z1 − x∥2 + β1

η2dec
∥U2z2 − z1∥2 +

β2

η2enc
∥W2z1 + ξ2∥2 − β1ξ

⊤
1 Σ−1

1 ξ1

− β1 log |Σ1| − β2ξ
⊤
2 Σ−1

2 ξ2 − β2 log |Σ2|
]

=
1

η2dec
Ex

[
∥U1W1x− x∥2 + trace(U1Σ1U

⊤
1 ) + β1∥U2W2W1x−W1x∥2 + β1 trace(U2Σ2U

⊤
2 )

+ β1 trace((U2W2 − I)Σ1(U2W2 − I)⊤) + c2β2

(
∥W2W1x∥2 + trace(W2Σ1W

⊤
2 ) + trace(Σ2)

)]
− β1d1 − β2d2 − β1 log |Σ1| − β2 log |Σ2|

=
1

η2dec

[
∥U1V1 − Z∥2F + trace(U⊤

1 U1Σ1) + β1∥(U2W2 − I)V1∥2F + β1 trace(U
⊤
2 U2Σ2)

+ β1 trace((U2W2 − I)⊤(U2W2 − I)Σ1) + c2β2∥W2V1∥2F + c2β2 trace(W
⊤
2 W2Σ1) + c2β2 trace(Σ2)

]
− β1d1 − β2d2 − β1 log |Σ1| − β2 log |Σ2|.

F.1 UNLEARNABLE ISOTROPIC ENCODER VARIANCES Σ1,Σ2

In this section, with the setting as in Eqn. (48) ,we derive the results for MHVAE two latents with
both encoder variances are unlearnable and isotropic Σ1 = σ2

1I, Σ2 = σ2
2I. We have the following

results.
Theorem 5. Assume Σ1 = σ2

1I, Σ2 = σ2
2I for some σ1, σ2 > 0. Assuming d0 ≥ d1 = d2, the

optimal solution of (U∗
1,U

∗
2,V

∗
1,W

∗
2) of LHVAE is given by:

V∗
1 = PΛR⊤,U∗

2 = PΩQ⊤,W∗
2 = U∗⊤

2 (U∗
2U

∗⊤
2 + c2I)−1,U∗

1 = ZV∗⊤
1 (V∗

1V
∗⊤
1 +Σ1)

−1,

where Z = RΘS⊤ is the SVD of Z and orthonormal matrix P ∈ Rd1×d1 . The diagonal elements of
Λ and Ω are as follows, with i ∈ [d1]:

• If θi ≥ max{
√√

β1β2cσ1σ2,
β2√
β1

c2σ2
2

σ1
}:

λ∗
i = 3

√
σ2
1√

β1β2cσ2

√
3

√
θ4i −

3

√
β1β2c2σ2

1σ
2
2 ,

ω∗
i = 3

√√
β2cσ1

β1σ2
2

√√√√ 3

√
θ2i −

3

√
β2
2c

4σ4
2

β1σ2
1

.

• If θi < max{
√√

β1β2cσ1σ2,
β2√
β1

c2σ2
2

σ1
} and

√
β1σ1 ≥

√
β2cσ2:

λ∗
i = 0,

ω∗
i =

√√√√√β2

β1

cσ1

σ2
− β2

β1
c2.

• If θi < max{
√√

β1β2cσ1σ2,
β2√
β1

c2σ2
2

σ1
} and

√
β1σ1 <

√
β2cσ2:

λ∗
i =

√
max

(
0,

σ1√
β1

(θ −
√
β1σ1)

)
,

ω∗
i = 0.
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Now we prove Theorem 5.

Proof of Theorem 5. The loss function is this setting will be:

LHVAE =
1

η2dec

[
∥U1V1 − Z∥2F + β1∥(U2W2 − I)V1∥2F + trace(U⊤

1 U1Σ1) + β1 trace(U
⊤
2 U2Σ2)

+ β1 trace((U2W2 − I)⊤(U2W2 − I)Σ1) + β2c
2∥W2V1∥2F + β2c

2 trace(W⊤
2 W2Σ1)

]
.

We have at critical points of LV AE :

η2dec

2

∂L
∂V1

= U⊤
1 (U1V1 − Z) + β1(U2W2 − I)⊤(U2W2 − I)V1 + c2β2W

⊤
2 W2V1 = 0,

(49)

η2dec

2

∂L
∂U1

= (U1V1 − Z)V⊤
1 +U1Σ1 = 0, (50)

η2dec

2

∂L
∂U2

= β1(U2W2 − I)V1V
⊤
1 W

⊤
2 + β1U2Σ2 + β1(U2W2 − I)Σ1W

⊤
2 = 0, (51)

η2dec

2

∂L
∂W2

= β1U
⊤
2 (U2W2 − I)V1V

⊤
1 + β1U

⊤
2 (U2W2 − I)Σ1 + c2β2W2V1V

⊤
1 + c2β2W2Σ1 = 0.

(52)

From Eqn. (52), we have:(
β1U

⊤
2 (U2W2 − I) + c2β2W2

)
(V1V

⊤
1 +Σ1) = 0

⇒W2 = − β1

c2β2
U⊤

2 (U2W2 − I) (since V1V
⊤
1 +Σ1 is PD)

⇒W2 = (U⊤
2 U2 + c2

β2

β1
I)−1U⊤

2

⇒W2 = U⊤
2 (U2U

⊤
2 + c2

β2

β1
I)−1. (53)

⇒U2W2 − I = −c2
β2

β1
(U2U

⊤
2 + c2

β2

β1
I)−1. (54)

From Eqn. (50), we have:

U1 = ZV⊤
1 (V1V

⊤
1 +Σ1)

−1. (55)

From Eqn. (49) with the use of Eqn. (54) and (53), we have:

U⊤
1 U1V1 −U⊤

1 Z+ c4
β2
2

β1
(U2U

⊤
2 + c2

β2

β1
I)−2V1

+ c2β2(U2U
⊤
2 + c2

β2

β1
I)−1U2U

⊤
2 (U2U

⊤
2 + c2

β2

β1
I)−1V1 = 0

⇒ U⊤
1 U1V1 + c2β2(U2U

⊤
2 + c2

β2

β1
I)−1V1 = U⊤

1 Z (56)

⇒ c2β2(U2U
⊤
2 + c2

β2

β1
I)−1V1V

⊤
1 = U⊤

1 ZV
⊤
1 −U⊤

1 U1V1V
⊤
1 = U⊤

1 (Z−U1V1)V
⊤
1 = U⊤

1 U1Σ1,

(57)

where the last equality is from Eqn. (50).

34



Published as a conference paper at ICLR 2024

Now, go back to the loss function LHVAE , we have:

∥U1V1 − Z∥2F + β1∥(U2W2 − I)V1∥2F + c2β2∥W2V1∥2F
= trace(U1V1V

⊤
1 U

⊤
1 − 2ZV⊤

1 U
⊤
1 ) + ∥Z∥2F + β1∥(U2W2 − I)V1∥2F

+ c2β2∥U⊤
2 (U2U

⊤
2 + c2I)−1V1∥2F

= trace(U1V1V
⊤
1 U

⊤
1 − 2ZV⊤

1 U
⊤
1 ) + ∥Z∥2F

+ c2β2 trace
(
V⊤

1 (U2U
⊤
2 + c2

β2

β1
I)−1(U2U

⊤
2 + c2

β2

β1
I)(U2U

⊤
2 + c2

β2

β1
I)−1V1

)
= trace(U⊤

1 U1V1V
⊤
1 − 2U⊤

1 ZV
⊤
1 ) + ∥Z∥2F + c2β2 trace

(
V⊤

1 (U2U
⊤
2 + c2

β2

β1
I)−1V1

)
= − trace(U⊤

1 U1Σ1)− trace(U⊤
1 ZV

⊤
1 ) + ∥Z∥2F + c2β2 trace

(
V⊤

1 (U2U
⊤
2 + c2

β2

β1
I)−1V1

)
,

(58)

where we use Eqn. (55) in the last equation.

We also have:

β1 trace((U2W2 − I)Σ1(U2W2 − I)⊤) + c2β2 trace(W2Σ1W
⊤
2 )

=
c4β2

2

β1
trace((U2U

⊤
2 + c2

β2

β1
I)−1Σ1(U2U

⊤
2 + c2

β2

β1
I)−1)

+ c2β2 trace(U
⊤
2 (U2U

⊤
2 + c2

β2

β1
I)−1Σ1(U2U

⊤
2 + c2

β2

β1
I)−1U2)

= c2β2 trace(Σ1(U2U
⊤
2 + c2

β2

β1
I)−1).

(59)

Thus, using Eqn. (58) and (59) to the loss function LHVAE yields:

LHVAE =
1

η2dec

[
∥Z∥2F − trace(U⊤

1 ZV
⊤
1 ) + c2β2 trace

(
V⊤

1 (U2U
⊤
2 + c2

β2

β1
I)−1V1

)
+ β1 trace(U2Σ2U

⊤
2 ) + c2β2 trace

(
Σ1(U2U

⊤
2 +

η2dec

η2enc
I)−1

)]
=

1

η2dec

[
∥Z∥2F − trace(U⊤

1 ZV
⊤
1 ) + β1 trace(U2Σ2U

⊤
2 )

+ c2β2 trace
(
(U2U

⊤
2 + c2

β2

β1
I)−1(V1V

⊤
1 +Σ1)

)]
, (60)

We have the assumption that Σ1 = σ2
1I. From Eqn. (57), its LHS is symmetric because the RHS is

symmetric, hence two symmetric matrices V1V
⊤
1 and (U2U

⊤
2 + c2 β2

β1
I)−1 commute. Hence, they

are orthogonally simultaneous diagonalizable. As a consequence, there exists an orthonormal matrix
P ∈ Rd1×d1 such that P⊤V1V

⊤
1 P and P⊤(U2U

⊤
2 + c2 β2

β1
I)−1P = (P⊤U2U

⊤
2 P + c2 β2

β1
I)−1

are diagonal matrices (thus, P⊤U2U
⊤
2 P is also diagonal). Note that we choose P such that the

eigenvalues of V1V
⊤
1 are in decreasing order, by altering the columns of P. Therefore, we can

write the SVD of V1 and U2 as V1 = PΛQ⊤ and U2 = PΩN⊤ with orthonormal matrices P ∈
Rd1×d1 ,Q ∈ Rd0×d0 ,N ∈ Rd2×d2 and singular matrices Λ ∈ Rd1×d0 , Ω ∈ Rd1×d2 . Specifically,
the singular values of V1,U2,Z are {λi}min(d0,d1)

i=1 , {ωi}min(d1,d2)
i=1 and {θi}min(d0,d3)

i=1 , respectively.

Next, from Eqn. (51), we have:

σ2
2U

⊤
2 U2 = −U⊤

2 (U2W2 − I)(V1V
⊤
1 + σ2

1I)W
⊤
2

= c2
β2

β1
U⊤

2 (U2U
⊤
2 + c2

β2

β1
I)−1(V1V

⊤
1 + σ2

1I)(U2U
⊤
2 + c2

β2

β1
I)−⊤U2, (61)
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where we use Eqn. (54) and Eqn. (53) in the last equality. Using the SVD forms of V1 and U2 in
Eqn. (61) yields:

σ2
2NΩ⊤ΩN⊤ = c2

β2

β1
NΩ⊤(ΩΩ⊤ + c2

β2

β1
I)−1(ΛΛ⊤ + σ2

1I)(ΩΩ
⊤ + c2

β2

β1
I)−1ΩN⊤

⇒σ2
2ω

2
i = c2

β2

β1

ω2
i (λ

2
i + σ2

1)

(ω2
i + c2 β2

β1
)2
, ∀i ∈ [min(d1, d2)].

⇒ωi = 0 or c2
β2

β1
(λ2

i + σ2
1) = σ2

2(ω
2
i + c2

β2

β1
)2, ∀i ∈ [min(d1, d2)]. (62)

Computing the components in the loss function in Eqn. (60), we have:

trace(U2Σ2U
⊤
2 ) = trace(U⊤

2 U2Σ2)

= trace(NΩ⊤ΩN⊤Σ2) = σ2
2 trace(Ω

⊤Ω) = σ2
2

d2∑
i=1

ω2
i ,

trace(U⊤
1 ZV

⊤
1 ) = trace(V⊤

1 U
⊤
1 Z)

= trace(V⊤
1 (V1V

⊤
1 + σ2

1I)
−1V1Z

⊤Z)

≤
d0∑
i=1

λ2
i θ

2
i

λ2
i + σ2

1

,

trace
(
(U2U

⊤
2 + c2

β2

β1
I)−1(V1V

⊤
1 + σ2

1I)
)
=

d1∑
i=1

λ2
i + σ2

1

ω2
i + c2 β2

β1

,

where we denote {θi}d0
i=1 are the singular values of Z and we use Von Neumann inequality for Z⊤Z

and V⊤
1 (V1V

⊤
1 + σ2

1I)
−1V1. The equality condition holds if these two symmetric matrices are

simultaneous ordering diagonalizable.

We assume that d1 = d2 ≤ d0. From the loss function in Eqn. (60) and above calculation, we have:

η2decLHVAE ≥
d0∑
i=1

θ2i −
d0∑
i=1

λ2
i θ

2
i

λ2
i + σ2

1

+ β1σ
2
2

d2∑
i=1

ω2
i +

d1∑
i=1

c2β2
λ2
i + σ2

1

ω2
i + c2 β2

β1

=

d0∑
i=1

θ2i −
d1∑
i=1

λ2
i θ

2
i

λ2
i + σ2

1

+ β1σ
2
2

d1∑
i=1

ω2
i +

d1∑
i=1

c2β2
λ2
i + σ2

1

ω2
i + c2 β2

β1

=

d0∑
i=d1

θ2i +

d1∑
i=1

(
σ2
1θ

2
i

λ2
i + σ2

1

+
c2β2(λ

2
i + σ2

1)

ω2
i + c2 β2

β1

+ β1σ
2
2ω

2
i

)
︸ ︷︷ ︸

g(λi,ωi)

, (63)

where we denote c := ηdec/ηenc. We consider two cases derived from Eqn. (62):

• If ω = 0:

g(λ, 0) =
σ2
1θ

2

λ2 + σ2
1

+ β1(λ
2 + σ2

1). (64)

We can easily see that if θ ≥
√
β1σ1, we have g is minimized at λ∗ =

√
σ1√
β1
(θ −

√
β1σ1)

with g∗ = 2
√
β1σ1θ := g1. Otherwise, λ∗ = 0 and g∗ = θ2 + β1σ

2
1 := g2.
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• If ω2 + c2 β2

β1
= c

σ2

√
β2

β1

√
λ2 + σ2

1 . Let t =
√

λ2 + σ2
1 (t ≥ σ1), we have that ω2 =

c
σ2

√
β2

β1
t− c2 β2

β1
≥ 0, hence t ≥ cσ2

√
β2

β1
. We have:

g(λ, ω) =
σ2
1θ

2

λ2 + σ2
1

+ 2cσ2

√
β1β2

√
λ2 + σ2

1 − β2c
2σ2

2

=
σ2
1θ

2

t2
+ 2cσ2

√
β1β2t− β2c

2σ2
2 := h(t, θ), t ≥ max(σ1, cσ2) (65)

Taking the derivative of h w.r.t t yields:

∂h

∂t
= −2σ2

1θ
2

t3
+ 2cσ2

√
β1β2, (66)

∂h

∂t
= 0

⇒t = 3

√
σ2
1θ

2

cσ2

√
β1β2

:= t0. (67)

We can see that t0 is the minimum of h(t, θ) if t0 ≥ max(σ1, cσ2

√
β2

β1
). Otherwise, we

will prove that the minimum of h(t, θ) is achieved at t∗ = max(σ1, cσ2

√
β2

β1
). We consider

three following cases about t0:

– If t0 ≥ max(σ1, cσ2

√
β2

β1
) ⇔

{
θ ≥

√
cσ1σ2

√
β1β2

θ ≥ c2σ2
2

σ1

β2√
β1

.

The minimum of g is achieved at t∗ = t0 with corresponding function value g3 =

3( 3
√
cσ1σ2θ

√
β1β2)

2 − c2σ2
2β2. We compare g3 with g1 and g2 from the case ω = 0:

g1 − g3 = 2
√
β1σ1θ + β2c

2σ2
2 − 3 3

√
β1β2c2σ2

1σ
2
2θ

2

=
√

β1σ1θ +
√

β1σ1θ + β2c
2σ2

2 − 3 3

√
β1β2c2σ2

1σ
2
2θ

2 ≥ 0. (Cauchy-Schwarz inequality)

g2 − g3 = θ2i + β1σ
2
1 + β2c

2σ2
2 − 3 3

√
β1β2c2σ2

1σ
2
2θ

2 ≥ 0. (Cauchy-Schwarz inequality).

Thus, g∗ = g3 and:

λ∗ = 3

√
σ2
1√

β1β2cσ2

√
3
√
θ4 − 3

√
β1β2c2σ2

1σ
2
2 ,

ω∗ = 3

√√
β2cσ1

β1σ2
2

√√√√ 3
√
θ2 − 3

√
β2
2c

4σ4
2

β1σ2
1

. (68)

– If σ1 ≥
√

β2

β1
cσ2 > t0 ⇔ θi < β2√

β1

c2σ2
2

σ1
≤
√√

β1β2cσ1σ2. Thus,
√
β1σ1 ≥

√
β2cσ2.

From the condition t ≥ max{σ1,
√

β2

β1
cσ2}, we obtain t ≥ σ1 > t0. For all t > t0,

we have:

∂h(t)

∂t
>

∂h(t0)

∂t
= 0. (since

∂h

∂t
is an increasing function w.r.t t)

So the minimum of g is achieved at t∗ = σ1 with corresponding function value:

g4 = θ2 + 2cσ1σ2

√
β1β2 − β2c

2σ2
2 . (69)
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We only need to compare g4 with g2 since θi <
√√

β1β2cσ1σ2 ≤
√

(
√
β1σ1)2 =√

β1σ1. We have:

g2 − g4 = β1σ
2
1 + β2c

2σ2
2 − 2cσ1σ2

√
β1β2 ≥ 0. (Cauchy-Schwarz inequality)

Thus, g∗ = g4 and:

λ∗ = 0,

ω∗ =

√√√√√β2

β1

cσ1

σ2
− β2

β1
c2.

– If σ1 > t0 ≥
√

β2

β1
cσ2 ⇔ β2√

β1

c2σ2
2

σ1
≤ θi <

√√
β1β2cσ1σ2. Thus,

√
β1σ1 ≥

√
β2cσ2.

Similar to the previous case, the minimum of g is achieved at t∗ = σ1 with corre-
sponding function value:

g∗ = g4 = θ2 + 2cσ1σ2

√
β1β2 − β2c

2σ2
2 , (70)

and minimizers:

λ∗ = 0,

ω∗ =

√√√√√β2

β1

cσ1

σ2
− β2

β1
c2.

– If
√

β2

β1
cσ2 > max{t0, σ1}, t∗ =

√
β2

β1
cσ2 and thus, ω = 0. We already know that

when ω∗ = 0, λ∗ = 0 when θ <
√
β1σ1 and λ∗ =

√
σ1θ√
β1

− σ2
1 when θ ≥

√
β1σ1.

In conclusion:

• If θ ≥ max{
√√

β1β2cσ1σ2,
β2√
β1

c2σ2
2

σ1
}:

λ∗ = 3

√
σ2
1√

β1β2cσ2

√
3
√
θ4 − 3

√
β1β2c2σ2

1σ
2
2 ,

ω∗ = 3

√√
β2cσ1

β1σ2
2

√√√√ 3
√
θ2 − 3

√
β2
2c

4σ4
2

β1σ2
1

.

• If θ < max{
√√

β1β2cσ1σ2,
β2√
β1

c2σ2
2

σ1
} and

√
β1σ1 ≥

√
β2cσ2:

λ∗ = 0,

ω∗ =

√√√√√β2

β1

cσ1

σ2
− β2

β1
c2.

• If θ < max{
√√

β1β2cσ1σ2,
β2√
β1

c2σ2
2

σ1
} and θ <

√
β1σ1 <

√
β2cσ2:

λ∗ = ω∗ = 0

• If θ < max{
√√

β1β2cσ1σ2,
β2√
β1

c2σ2
2

σ1
} and

√
β1σ1 ≤ θ and

√
β1σ1 <

√
β2cσ2:

ω∗ = 0,

λ∗ =

√
σ1√
β1

(θ −
√
β1σ1).
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Remark 6. The singular values of W2 and U1 can be calculated via Eqn. (53) and Eqn. (55).
From Eqn. (53), we have that:

W2 = U⊤
2 (U2U

⊤
2 + c2I)−1 = NΩ(ΩΩ⊤ + c2I)−1P⊤. (71)

Since N can be arbitrary orthonormal matrix, the number of zero rows of W2 can vary from 0 (no
posterior collapse) to d2 − rank(W2). Similar argument can be made for V1. Indeed, we have bv1
has the form V1 = PΛR⊤. Thus, P will determine the number of zero rows of V1. The number of
zero rows of V1 will vary from 0 to d1 − rank(V1) since P can be chosen arbitrarily.

F.2 LEARNABLE Σ2 AND UNLEARNABLE ISOTROPIC Σ1

Proof of Theorem 3. With unlearnable isotropic Σ1 = σ2
1I, the loss function LHVAE becomes (af-

ter dropping the constants):

LHVAE =
1

η2dec

[
∥U1V1 − Z∥2F + β1∥(U2W2 − I)V1∥2F + trace(U⊤

1 U1Σ1) + β1 trace(U
⊤
2 U2Σ2)

+ β1 trace((U2W2 − I)⊤(U2W2 − I)Σ1) + β2c
2∥W2V1∥2F + β2c

2 trace(W⊤
2 W2Σ1)

+ β2c
2 trace(Σ2)

]
− β2 log |Σ2|.

Taking the derivative of LHVAE w.r.t Σ2:

1

2

∂L
∂Σ2

=
β1

η2dec
(U⊤

2 U2 + c2
β2

β1
I)− β2Σ

−1
2 = 0

⇒Σ2 =
β2

β1
η2dec(U

⊤
2 U2 + c2

β2

β1
I)−1. (72)

Plugging this into the loss function and dropping constants yields:

L
′

V AE =
1

η2dec

[
∥U1V1 − Z∥2F + β1∥(U2W2 − I)V1∥2F + trace(U⊤

1 U1Σ1)

+ β1 trace((U2W2 − I)⊤(U2W2 − I)Σ1) + β2c
2∥W2V1∥2F + β2c

2 trace(W⊤
2 W2Σ1)

]
+ β2 log |U⊤

2 U2 + c2
β2

β1
I|. (73)

At critical points of LV AE :

η2dec

2

∂L
∂V1

= U⊤
1 (U1V1 − Z) + β1(U2W2 − I)⊤(U2W2 − I)V1 + β2c

2W⊤
2 W2V1 = 0,

(74)

η2dec

2

∂L
∂U1

= (U1V1 − Z)V⊤
1 +U1Σ1 = 0, (75)

η2dec

2

∂L
∂U2

= β1(U2W2 − I)V1V
⊤
1 W

⊤
2 + β2η

2
decU2(U

⊤
2 U2 + c2

β2

β1
I)−1 + β1(U2W2 − I)Σ1W

⊤
2 = 0,

(76)

η2dec

2

∂L
∂W2

= β1U
⊤
2 (U2W2 − I)V1V

⊤
1 + β1U

⊤
2 (U2W2 − I)Σ1 + β2c

2W2V1V
⊤
1 + β2c

2W2Σ1 = 0.

(77)
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From Eqn. (77), we have:(
β1U

⊤
2 (U2W2 − I) + β2c

2W2

)
(V1V

⊤
1 +Σ1) = 0

⇒W2 = − β1

β2c2
U⊤

2 (U2W2 − I) (since V1V
⊤
1 +Σ1 is positive definite)

⇒W2 = (U⊤
2 U2 + c2

β2

β1
I)−1U⊤

2

⇒W2 = U⊤
2 (U2U

⊤
2 + c2

β2

β1
I)−1. (78)

⇒U2W2 − I = −c2
β2

β1
(U2U

⊤
2 + c2

β2

β1
I)−1. (79)

From Eqn. (75), we have:

U1 = ZV⊤
1 (V1V

⊤
1 +Σ1)

−1, (80)

From Eqn. (74), with the use of Eqn. (79) and (78), we have:

U⊤
1 U1V1 −U⊤

1 Z+ c4
β2
2

β1
(U2U

⊤
2 + c2

β2

β1
I)−2V1

+ c2β2(U2U
⊤
2 + c2

β2

β1
I)−1U2U

⊤
2 (U2U

⊤
2 + c2

β2

β1
I)−1V1 = 0

⇒ U⊤
1 U1V1 + c2β2(U2U

⊤
2 + c2

β2

β1
I)−1V1 = U⊤

1 Z (81)

⇒ c2β2(U2U
⊤
2 + c2

β2

β1
I)−1V1V

⊤
1 = U⊤

1 ZV
⊤
1 −U⊤

1 U1V1V
⊤
1 = U⊤

1 (Z−U1V1)V
⊤
1 = U⊤

1 U1Σ1,

(82)

where the last equality is from Eqn. (75).

We have the assumption that Σ1 = σ2
1I. From Eqn. (82), its LHS is symmetric because the RHS is

symmetric, hence two symmetric matrices V1V
⊤
1 and (U2U

⊤
2 + c2 β2

β1
I)−1 commute. Hence, they

are orthogonally simultaneous diagonalizable. As a consequence, there exists an orthonormal matrix
P ∈ Rd1×d1 such that P⊤V1V

⊤
1 P and P⊤(U2U

⊤
2 + c2 β2

β1
I)−1P = (P⊤U2U

⊤
2 P + c2 β2

β1
I)−1

are diagonal matrices (thus, P⊤U2U
⊤
2 P is also diagonal). Note that we choose P such that the

eigenvalues of V1V
⊤
1 are in decreasing order, by altering the columns of P. Therefore, we can

write the SVD of V1 and U2 as V1 = PΛQ⊤ and U2 = PΩN⊤ with orthonormal matrices
P ∈ Rd1×d1 ,Q ∈ Rd0×d0 ,N ∈ Rd2×d2 and singular matrices Λ ∈ Rd1×d0 , Ω ∈ Rd1×d2 . We
denote the singular values of V1,U2,Z are {λi}min(d0,d1)

i=1 , {ωi}min(d1,d2)
i=1 and {θi}d0

i=1, respectively.

Next, by multiplying U⊤
2 to the left of Eqn. (76), we have:

β2η
2
decU

⊤
2 U2(U

⊤
2 U2 + c2

β2

β1
I)−1 = −β1U

⊤
2 (U2W2 − I)(V1V

⊤
1 + σ2

1I)W
⊤
2

= c2β2U
⊤
2 (U2U

⊤
2 + c2

β2

β1
I)−1(V1V

⊤
1 + σ2

1I)(U2U
⊤
2 + c2

β2

β1
I)−⊤U2. (83)

Plugging the SVD forms of V1 and U2 in Eqn. (83) yields:

η2decNΩ⊤Ω(Ω⊤Ω+ c2
β2

β1
I)−1N⊤ = c2NΩ⊤(ΩΩ⊤ + c2

β2

β1
I)−1(ΛΛ⊤ + σ2

1I)(ΩΩ
⊤ + c2

β2

β1
I)−1ΩN⊤

⇒ η2decω
2
i

ω2
i + c2 β2

β1

= c2
ω2
i (λ

2
i + σ2

1)

(ω2
i + c2 β2

β1
)2
, ∀i ∈ [min(d1, d2)]. (84)

⇒ωi = 0 or ω2
i + c2

β2

β1
=

c2

η2dec
(λ2

i + σ2
1), ∀i ∈ [min(d1, d2)]. (85)
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Using above equations, the loss function can be simplified into:

L
′

HVAE =
1

η2dec

[
∥Z∥2F − trace(U⊤

1 ZV
⊤
1 ) + c2β2 trace

(
(U2U

⊤
2 + c2

β2

β1
I)−1(V1V

⊤
1 +Σ1)

)]
+ β2 log |U⊤

2 U2 + c2
β2

β1
I|. (86)

Computing the components in L′

HVAE , we have:

log |U⊤
2 U2 + c2

β2

β1
I| =

d2∑
i=1

log(ω2
i + c2

β2

β1
),

trace(U⊤
1 ZV

⊤
1 ) = trace(V⊤

1 U
⊤
1 Z)

= trace(V⊤
1 (V1V

⊤
1 + σ2

1I)
−1V1Z

⊤Z)

≤
d0∑
i=1

λ2
i θ

2
i

λ2
i + σ2

1

,

trace
(
(U2U

⊤
2 + c2

β2

β1
I)−1(V1V

⊤
1 + σ2

1I)
)
=

d1∑
i=1

λ2
i + σ2

1

ω2
i + c2 β2

β1

,

where we used Von Neumann inequality for V⊤
1 (V1V

⊤
1 +σ2

1I)
−1V1 and Z⊤Z with equality holds

if and only if these two matrices are simultaneous ordering diagonalizable by some orthonormal
matrix R.

We assume d1 = d2 ≤ d0 for now. Therefore, we have:

η2decLHVAE ≥
d0∑
i=1

θ2i −
d1∑
i=1

λ2
i θ

2
i

λ2
i + σ2

1

+

d1∑
i=1

c2β2
λ2
i + σ2

1

ω2
i + c2 β2

β1

+ β2η
2
dec

d1∑
i=1

log(ω2
i + c2

β2

β1
)

=

d0∑
i=d1

θ2i +

d1∑
i=1

(
σ2
1θ

2
i

λ2
i + σ2

1

+ c2β2
λ2
i + σ2

1

ω2
i + c2 β2

β1

+ β2η
2
dec log(ω

2
i + c2

β2

β1
)

)
︸ ︷︷ ︸

g(λi,ωi)

. (87)

Consider the function:

g(λ, ω) =
σ2
1θ

2

λ2 + σ2
1

+ c2β2
λ2 + σ2

1

ω2 + c2 β2

β1

+ β2η
2
dec log(ω

2 + c2
β2

β1
).

We consider two cases:

• If ω = 0, we have g(λ, 0) =
σ2
1θ

2

λ2+σ2
1
+ β1(λ

2 + σ2
1) + β2η

2
dec log(c

2 β2

β1
). It is easy to see

that g(λ, 0) is minimized at:

λ∗ =

√
max

(
0,

σ1√
β1

(
θ −

√
β1σ1

))
. (88)

• If ω2 + c2 β2

β1
= c2/η2dec(λ

2 + σ2
1) =

λ2+σ2
1

η2
enc

, then we have:

g =
σ2
1θ

2

λ2 + σ2
1

+ β2η
2
dec log(λ

2 + σ2
1) + β2η

2
dec − β2η

2
dec log(η

2
enc), (89)

Since we require both t := λ2 + σ2
1 ≥ σ2

1 and ω2 = (λ2 + σ2
1 − β2

β1
η2dec)/η

2
enc = (t −

β2

β1
η2dec)/η

2
enc ≥ 0, we consider three cases:
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– If σ2
1 ≥ β2

β1
η2dec, g is minimized at the minima t0 =

σ2
1θ

2

β2η2
dec

if t0 ≥ σ2
1 , otherwise, g is

minimized at t = σ2
1 . Thus:

λ∗ =
σ1√
β2ηdec

√
max(0, θ2 − β2η2dec),

ω∗ =

√√√√max

(
σ2
1 −

β2

β1
∗ η2dec

η2enc
,

σ2
1θ

2

β2η2encη
2
dec

− c2
β2

β1

)
. (90)

We can easily check that this solution is optimal after comparing with the case ω = 0
above.

– If σ2
1 < β2

β1
η2dec, and if the minima of g at t0 =

σ2
1θ

2

β2η2
dec

< β2

β1
η2dec, g is minimized at

t = β2

β1
η2dec, thus ω = 0 and we know from the case ω = 0 above that:

λ∗ =

√
max

(
0,

σ1√
β1

(
θ −

√
β1σ1

))
,

ω∗ = 0. (91)

– If σ2
1 < β2

β1
η2dec, and if the minima of g at t0 =

σ2
1θ

2

β2η2
dec

≥ β2

β1
η2dec, g is minimized at

t0 = λ2 + σ2
1 =

σ2
1θ

2

β2η2
dec

and thus:

λ∗ =
σ1√
β2ηdec

√
θ2 − β2η2dec,

ω∗ =

√
σ2
1θ

2

β2η2encη
2
dec

− β2

β1
c2. (92)

We can easily check this solution is optimal in this case after comparing with the case
ω = 0 above.

We call the optimal singulars above the ”standard” case. For other relations between d0, d1 and d2,
we consider below cases:

• If d0 < d1 < d2: For index i ≤ d0, the optimal values follow standard case. For d0 < i ≤

d1, clearly λi = 0 (recall V1 ∈ Rd1×d0 ), then ωi =

√
max(0,

σ2
1−

β2
β1

∗η2
dec

η2
enc

). For i > d1, it

is clear that λi = ωi = 0.

• If d0 < d2 ≤ d1: For index i ≤ d0, the optimal values follow standard case. For d0 <

i ≤ d2, clearly λi = 0, then ωi =

√
max(0,

σ2
1−

β2
β1

∗η2
dec

η2
enc

). For i > d2, it is clear that

λi = ωi = 0.

• If d1 ≤ min(d0, d2): For index i ≤ d1, the optimal values follow standard case. For
d1 < i, λi = ωi = 0 (recall V1 ∈ Rd1×d0 and U2 ∈ Rd1×d2 ).

• If d2 ≤ d0 < d1: For index i ≤ d2, the optimal values follow standard case. For d2 < i ≤

d0, ωi = 0 and λi =

√
max

(
0, σ1√

β1

(
θ −

√
β1σ1

))
. For i > d0, λi = ωi = 0.

• If d2 < d1 ≤ d0: For index i ≤ d2, the optimal values follow standard case. For d2 < i ≤

d1, ωi = 0 and λi =

√
max

(
0, σ1√

β1

(
θ −

√
β1σ1

))
. For i > d1, λi = ωi = 0
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Remark 7. If Σ2 is diagonal, we can easily calculate the optimal Σ∗
2 via the equation Σ∗

2 =
η2dec(U

⊤
2 U2 + c2I)−1. Also, in this case, U2 will have orthogonal columns and can be writ-

ten as U2 = TΩ
′

with orthonormal matrix T and Ω
′

is a diagonal matrix. Therefore, W2 =
U⊤

2 (U2U
⊤
2 + c2I)−1 = Ω

′
(Ω

′
Ω

′⊤ + c2I)−1T⊤ will have zero rows (posterior collapse in second
latent variable) if rank(W2) = rank(U2) < d2.

For the first latent variable, posterior collapse may not exist. Indeed, we have V1 has the form
V1 = PΛR⊤. Thus, P will determine the number of zero rows of V1. The number of zero rows of
V1 will vary from 0 to d1 − rank(V1) since P can be chosen arbitrarily.

F.2.1 EXTENDING TO DEEP LINEAR NETWORKS

In this subsection, we extend the results from a linear layer in the encoder and decoder to deep linear
network without bias term. We assume that each deep linear module includes M(M ≥ 2) matrices
as following:

Encoder: q(z1|x) ∼ N (WM . . .W1x,Σ1),where WM ∈ Rd1×D0 ,WM−1, . . . ,W1 ∈ RD0×D0 ,

q(z2|z1) ∼ N (TM . . .T1z1,Σ2),where TM ∈ Rd2×d1 ,TM−1, . . . ,T1 ∈ Rd1×d1 .

Decoder: p(z1|z2) ∼ N (UM . . .U1z2, η
2
decI),where UM ∈ Rd1×d2 ,UM−1, . . . ,U1 ∈ Rd2×d2

p(y|z1) ∼ N (SM . . .S1z1, η
2
decI),where SM ∈ RD0×d1 ,SM−1, . . . ,S1 ∈ Rd1×d1 .

Prior: p(z2) ∼ N (0, η2encI).

Proof. Let A := Ex(xx
⊤) = PAΦP

⊤
A, x̃ = Φ−1/2P⊤

Ax and Z := Ex(xx̃
⊤) ∈ RD0×d0 . Also, let

V1 = W1PAΦ
1/2 ∈ Rd1×D0 .

We minimize the negative ELBO loss function for MHVAE with 2 layers of latent with :

LHVAE =
1

η2dec

[
∥SM . . .S1WM . . .V1 − Z∥2F + β1∥(UM . . .U1TM . . .T1 − I)WM . . .V1∥2F

+ trace(S⊤
1 . . .S⊤

MS⊤
1 . . .S⊤

MΣ1) + β1 trace(U
⊤
1 . . .U⊤

MUM . . .U1Σ2)

+ β1 trace((UM . . .U1TM . . .T1 − I)⊤(UM . . .U1TM . . .T1 − I)Σ1)

+ β2c
2∥TM . . .T1WM . . .V1∥2F + β2c

2 trace(T⊤
1 . . .T⊤

MTM . . .T1Σ1)

+ β2c
2 trace(Σ2)

]
− β2 log |Σ2|.

Taking the derivative of LHVAE w.r.t Σ2:

1

2

∂L
∂Σ2

=
β1

η2dec
(U⊤

1 . . .U⊤
MUM . . .U1 + c2

β2

β1
I)− β2Σ

−1
2 = 0

⇒Σ2 =
β2

β1
η2dec(U

⊤
1 . . .U⊤

MUM . . .U1 + c2
β2

β1
I)−1. (93)

Plugging this into the loss function and dropping constants yields:

L
′

V AE =
1

η2dec

[
∥SM . . .S1WM . . .V1 − Z∥2F + β1∥(UM . . .U1TM . . .T1 − I)WM . . .V1∥2F

+ trace(S⊤
1 . . .S⊤

MSM . . .S1Σ1)

+ β1 trace((UM . . .U1TM . . .T1 − I)⊤(UM . . .U1TM . . .T1 − I)Σ1)

+ β2c
2∥TM . . .T1WM . . .V1∥2F + β2c

2 trace(T⊤
1 . . .T⊤

MTM . . .T1Σ1)
]

+ β2 log |U⊤
1 . . .U⊤

MUM . . .U1 + c2
β2

β1
I|. (94)
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At critical points of LHVAE :

η2dec

2

∂L
∂(WM . . .V1)

= S⊤
1 . . .S⊤

M (SM . . .S1WM . . .V1 − Z)

+ β1(UM . . .U1TM . . .T1 − I)⊤(UM . . .U1TM . . .T1 − I)WM . . .V1

+ β2c
2T⊤

1 . . .T⊤
MTM . . .T1WM . . .V1 = 0, (95)

η2dec

2

∂L
∂(SM . . .S1)

= (SM . . .S1WM . . .V1 − Z)V⊤
1 . . .W⊤

M + SM . . .S1Σ1 = 0, (96)

η2dec

2

∂L
∂(UM . . .U1)

= β1(UM . . .U1TM . . .T1 − I)WM . . .V1V
⊤
1 . . .W⊤

MT⊤
1 . . .T⊤

M

+ β2η
2
decUM . . .U1(U

⊤
1 . . .U⊤

MUM . . .U1 + c2
β2

β1
I)−1 + β1(UM . . .U1TM . . .T1 − I)Σ1T

⊤
1 . . .T⊤

M = 0,

(97)

η2dec

2

∂L
∂(TM . . .T1)

= β1U
⊤
1 . . .U⊤

M (UM . . .U1TM . . .T1 − I)WM . . .V1V
⊤
1 . . .W⊤

M

+ β1U
⊤
1 . . .U⊤

M (UM . . .U1TM . . .T1 − I)Σ1 + β2c
2TM . . .T1WM . . .V1V

⊤
1 . . .W⊤

M

+ β2c
2TM . . .T1Σ1 = 0. (98)

From Eqn. (98), we have:(
β1U

⊤
1 . . .U⊤

M (UM . . .U1TM . . .T1 − I) + β2c
2TM . . .T1

)
(WM . . .V1V

⊤
1 . . .W⊤

M +Σ1) = 0

⇒TM . . .T1 = − β1

β2c2
U⊤

1 . . .U⊤
M (UM . . .U1TM . . .T1 − I)

⇒TM . . .T1 = (U⊤
1 . . .U⊤

MUM . . .U1 + c2
β2

β1
I)−1U⊤

1 . . .U⊤
M

⇒TM . . .T1 = U⊤
1 . . .U⊤

M (UM . . .U1U
⊤
1 . . .U⊤

M + c2
β2

β1
I)−1. (99)

⇒UM . . .U1TM . . .T1 − I = −c2
β2

β1
(UM . . .U1U

⊤
1 . . .U⊤

M + c2
β2

β1
I)−1. (100)

From Eqn. (96), we have:

SM . . .S1 = ZV⊤
1 . . .W⊤

M (WM . . .V1V
⊤
1 . . .W⊤

M +Σ1)
−1, (101)

From Eqn. (95), with the use of Eqn. (100) and (99), we have:

S⊤
1 . . .S⊤

MSM . . .S1WM . . .V1 − S⊤
1 . . .S⊤

MZ+ c4
β2
2

β1
(U⊤

1 . . .U⊤
M + c2

β2

β1
I)−2WM . . .V1

+ c2β2(U
⊤
1 . . .U⊤

M + c2
β2

β1
I)−1UM . . .U1U

⊤
1 . . .U⊤

M (U⊤
1 . . .U⊤

M + c2
β2

β1
I)−1WM . . .V1 = 0

⇒ S⊤
1 . . .S⊤

MSM . . .S1WM . . .V1 + c2β2(U
⊤
1 . . .U⊤

M + c2
β2

β1
I)−1WM . . .V1 = S⊤

1 . . .S⊤
MZ

(102)

⇒ c2β2(U
⊤
1 . . .U⊤

M + c2
β2

β1
I)−1WM . . .V1V

⊤
1 . . .W⊤

M

= S⊤
1 . . .S⊤

MZV⊤
1 . . .W⊤

M − S⊤
1 . . .S⊤

MSM . . .S1WM . . .V1V
⊤
1 . . .W⊤

M

= S⊤
1 . . .S⊤

M (Z− SM . . .S1WM . . .V1)V
⊤
1 . . .W⊤

M = S⊤
1 . . .S⊤

MSM . . .S1Σ1, (103)

where the last equality is from Eqn. (96).
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Apply similar arguments as the proof in Appendix F.2, from Eqn. (103), we have
WM . . .V1V

⊤
1 . . .W⊤

M and UM . . .U1U
⊤
1 . . .U⊤

M are orthogonally simultaneous diagonalizable.
Therefore, we can write the SVD of WM . . .V1 and UM . . .U1 as WM . . .V1 = PΛQ⊤ and
UM . . .U1 = PΩN⊤ with orthonormal matrices P ∈ Rd1×d1 ,Q ∈ Rd0×d0 ,N ∈ Rd2×d2

and singular matrices Λ ∈ Rd1×d0 , Ω ∈ Rd1×d2 . We denote the singular values of
WM . . .V1,UM . . .U1,Z are {λi}min(d0,d1)

i=1 , {ωi}min(d1,d2)
i=1 and {θi}d0

i=1, respectively.

Next, by multiplying U⊤
2 to the left of Eqn. (97), we have:

β2η
2
decU

⊤
1 . . .U⊤

MUM . . .U1(U
⊤
1 . . .U⊤

MUM . . .U1 + c2I)−1

= −β1U
⊤
1 . . .U⊤

M (UM . . .U1TM . . .T1 − I)(WM . . .V1V
⊤
1 . . .W⊤

M + σ2
1I)T

⊤
1 . . .T⊤

M

= c2β2U
⊤
1 . . .U⊤

MA−1(WM . . .V1V
⊤
1 . . .W⊤

M + σ2
1I)A

−⊤UM . . .U1, (104)

where A := UM . . .U1U
⊤
1 . . .U⊤

M + c2 β2

β1
I.

Plugging the SVD forms of WM . . .V1 and UM . . .U1 in Eqn. (104) yields:

η2decNΩ⊤Ω(Ω⊤Ω+ c2
β2

β1
I)−1N⊤ = c2NΩ⊤(ΩΩ⊤ + c2

β2

β1
I)−1(ΛΛ⊤ + σ2

1I)(ΩΩ
⊤ + c2

β2

β1
I)−1ΩN⊤

⇒ η2decω
2
i

ω2
i + c2 β2

β1

= c2
ω2
i (λ

2
i + σ2

1)

(ω2
i + c2 β2

β1
)2
, ∀i ∈ [min(d1, d2)]. (105)

⇒ωi = 0 or ω2
i + c2

β2

β1
=

c2

η2dec
(λ2

i + σ2
1), ∀i ∈ [min(d1, d2)]. (106)

Using above equations, the loss function can be simplified into:

L
′

HVAE =
1

η2dec

[
∥Z∥2F − trace(S⊤

1 . . .S⊤
MZV⊤

1 . . .W⊤
M )

+ c2β2 trace
(
(UM . . .U1U

⊤
1 . . .U⊤

M + c2
β2

β1
I)−1(WM . . .V1V

⊤
1 . . .W⊤

M +Σ1)
)]

+ β2 log |U⊤
1 . . .U⊤

MUM . . .U1 + c2
β2

β1
I|. (107)

Computing the components in L′

HVAE , we have:

log |U⊤
1 . . .U⊤

MUM . . .U1 + c2
β2

β1
I| =

d2∑
i=1

log(ω2
i + c2

β2

β1
),

trace(S⊤
1 . . .S⊤

MZV⊤
1 . . .W⊤

M ) = trace(V⊤
1 . . .W⊤

MS⊤
1 . . .S⊤

MZ)

= trace(V⊤
1 . . .W⊤

M (WM . . .V1V
⊤
1 . . .W⊤

M + σ2
1I)

−1WM . . .V1Z
⊤Z)

≤
d0∑
i=1

λ2
i θ

2
i

λ2
i + σ2

1

,

trace
(
(U2U

⊤
2 + c2

β2

β1
I)−1(V1V

⊤
1 + σ2

1I)
)
=

d1∑
i=1

λ2
i + σ2

1

ω2
i + c2 β2

β1

,

where we used Von Neumann inequality for V⊤
1 . . .W⊤

M (WM . . .V1V
⊤
1 . . .W⊤

M +
σ2
1I)

−1WM . . .V1 and Z⊤Z with equality holds if and only if these two matrices are simultaneous
ordering diagonalizable by some orthonormal matrix R.
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We assume d1 = d2 ≤ d0. Therefore, we have:

η2decLHVAE ≥
d0∑
i=1

θ2i −
d1∑
i=1

λ2
i θ

2
i

λ2
i + σ2

1

+

d1∑
i=1

c2β2
λ2
i + σ2

1

ω2
i + c2 β2

β1

+ β2η
2
dec

d1∑
i=1

log(ω2
i + c2

β2

β1
)

=

d0∑
i=d1

θ2i +

d1∑
i=1

(
σ2
1θ

2
i

λ2
i + σ2

1

+ c2β2
λ2
i + σ2

1

ω2
i + c2 β2

β1

+ β2η
2
dec log(ω

2
i + c2

β2

β1
)

)
︸ ︷︷ ︸

g(λi,ωi)

. (108)

Consider the function:

g(λ, ω) =
σ2
1θ

2

λ2 + σ2
1

+ c2β2
λ2 + σ2

1

ω2 + c2 β2

β1

+ β2η
2
dec log(ω

2 + c2
β2

β1
).

We consider two cases:

• If ω = 0, we have g(λ, 0) =
σ2
1θ

2

λ2+σ2
1
+ β1(λ

2 + σ2
1) + β2η

2
dec log(c

2 β2

β1
). It is easy to see

that g(λ, 0) is minimized at:

λ∗ =

√
max

(
0,

σ1√
β1

(
θ −

√
β1σ1

))
. (109)

• If ω2 + c2 β2

β1
= c2/η2dec(λ

2 + σ2
1) =

λ2+σ2
1

η2
enc

, then we have:

g =
σ2
1θ

2

λ2 + σ2
1

+ β2η
2
dec log(λ

2 + σ2
1) + β2η

2
dec − β2η

2
dec log(η

2
enc), (110)

Since we require both t := λ2 + σ2
1 ≥ σ2

1 and ω2 = (λ2 + σ2
1 − β2

β1
η2dec)/η

2
enc = (t −

β2

β1
η2dec)/η

2
enc ≥ 0, we consider three cases:

– If σ2
1 ≥ β2

β1
η2dec, g is minimized at the minima t0 =

σ2
1θ

2

β2η2
dec

if t0 ≥ σ2
1 , otherwise, g is

minimized at t = σ2
1 . Thus:

λ∗ =
σ1√
β2ηdec

√
max(0, θ2 − β2η2dec),

ω∗ =

√√√√max

(
σ2
1 −

β2

β1
∗ η2dec

η2enc
,

σ2
1θ

2

β2η2encη
2
dec

− c2
β2

β1

)
. (111)

We can easily check that this solution is optimal after comparing with the case ω = 0
above.

– If σ2
1 < β2

β1
η2dec, and if the minima of g at t0 =

σ2
1θ

2

β2η2
dec

< β2

β1
η2dec, g is minimized at

t = β2

β1
η2dec, thus ω = 0 and we know from the case ω = 0 above that:

λ∗ =

√
max

(
0,

σ1√
β1

(
θ −

√
β1σ1

))
,

ω∗ = 0. (112)

– If σ2
1 < β2

β1
η2dec, and if the minima of g at t0 =

σ2
1θ

2

β2η2
dec

≥ β2

β1
η2dec, g is minimized at

t0 = λ2 + σ2
1 =

σ2
1θ

2

β2η2
dec

and thus:
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λ∗ =
σ1√
β2ηdec

√
θ2 − β2η2dec,

ω∗ =

√
σ2
1θ

2

β2η2encη
2
dec

− β2

β1
c2. (113)

We can easily check this solution is optimal in this case after comparing with the case
ω = 0 above.

Remark 8. For deep linear MHVAE with two latents and unlearnable isotropic first encoder vari-
ance Σ1, if Σ2 is chosen to be diagonal from the set of global parameters and there exists some
ωi = 0, we see that UM . . .U1 will have zero rows that are corresponding with the dimensions of
z2 collapse to the prior. For the first latent variable, similar as linear MHVAE, posterior collapse
may not exist.
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